scholarly journals Shear Friction Characteristics and Modification Factor of Concrete Prepared Using Expanded Bottom Ash and Dredged Soil Granules

Author(s):  
Keun-Hyeok Yang ◽  
Kyung-Ho Lee

Abstract The objective of this study is to assess the shear friction characteristics of lightweight aggregate concrete (LWAC) prepared using artificially expanded bottom ash and dredged soil granules. A total of 37 concrete mixtures were prepared under the classification of three series. In the first and second series, the natural sand content for replacing lightweight fine aggregates and the water-to-cement ratio varied to obtain different densities and compressive strengths of concrete. The third series was designed to estimate the effect of the maximum aggregate size on the friction resistance along the shear crack plane of the monolithic interfaces. The frictional angle of the LWAC tested was formulated as a function of the ratio of the effective tensile and compressive strengths of concrete through the expansion of the integrated mathematical models proposed by Kwon et al., based on the upper-bound theorem of concrete plasticity. When predicting the shear friction strength of LWAC, the present mathematical model exhibits relatively good accuracy, yielding the mean and standard deviation of the ratios between experiments and predictions of 1.06 and 0.14, respectively, whereas the empirical equations proposed by the AASHTO provision and Mattock underestimated the results. Ultimately, an advanced modification factor for shear design of LWAC is proposed as a function of the density and compressive strength of concrete and the maximum size of aggregates.

2012 ◽  
Vol 724 ◽  
pp. 103-106
Author(s):  
Yoo Taek Kim ◽  
Chang Sub Jang ◽  
Yun Jae Choi

This study was conducted to evaluate the feasibility of using bottom ash after magnetic separation and dredged soil from the coal power plants as raw materials for artificial lightweight aggregate (ALA). The dependence of composition and sintering temperature on physical properties of ALA was investigated. Fe compounds play an important role in the bloating reaction, thus specimens containing more ferrous materials such as Fe3O4 are more easily bloated. Both black core region and bloating phenomenon were increased with an increase in the contents of dredged soil. Specimens made use of MBA(Magnetic separated bottom ash which has magnetic components) showed lower bulk density than those of NMBA(non-magnetic separated bottom ash which has much less ferrous materials. It was confirmed that MBA could be used as an effective raw material for making ALA having low density because the ferrous components in it act as bloating agents.


1987 ◽  
Vol 54 (1) ◽  
pp. 99-104 ◽  
Author(s):  
S. Das ◽  
B. V. Kostrov

The numerical boundary integral equation method for the solution of dynamic shear crack problems is discussed in detail, including the questions of the numerical approximation, stability, and efficiency. In particular, the necessary conditions for stability are developed. In addition to a discussion of the original algorithm proposed by Das (1980), a new version is proposed which is more efficient for some important particular cases, due to the fact that the domain of integration for the necessary convolutions is limited only to the slipping part of the crack plane instead of the entire disturbed area of the crack plane.


2012 ◽  
Vol 724 ◽  
pp. 455-459 ◽  
Author(s):  
Seung Gu Kang ◽  
Si Nae Jo ◽  
Gi Gang Lee

The artificial aggregates (AAs) were manufactured from the parent batch powders consisting of bottom ash produced at thermal power plant and dredged soil by direct sintering method at 1050~1200°C for 10min. The bloating phenomenon could be occurred in AAs due to a gas-capturing caused by large quantity of liquid formed at the specimen surface. Increasing the amount of the Na2O added enlarged the area of black core and size of the macro pores in the aggregates. The inside black core got out of the surface of the specimens sintered at 1200°C showing the rugged and cracked surface, but this morphology did not cause a water absorption to increase.


2008 ◽  
Vol 400-402 ◽  
pp. 379-384 ◽  
Author(s):  
Theradej Litsomboon ◽  
Pichai Nimityongskul ◽  
Naveed Anwar

This study examines the feasibility of using different lightweight aggregates (LA) and bottom ash as coarse and fine aggregates in concrete with fly ash. The lightweight materials were composed of 3 types, namely pumice, cellular lightweight aggregate and MTEC lightweight aggregate. The tests for physical and mechanical properties of lightweight aggregate concretes (LWAC) were conducted in terms of workability, compressive strength, apparent density, abrasion resistance and absorption. Test results showed that compressive strength of LWAC increased with an increase in apparent density, which is mainly depending on the type of aggregate. The replacement of normal weight sand with bottom ash resulted in a decrease both in density of concrete by 180-225 kg/m3 and 28-day compressive strength of concrete by 16-26%. Moreover, the use of bottom ash to replace sand in concrete increased the demand for mixing water due to its porosity and shape and to further obtain the required workability. The type and absorption of LA influenced predominantly the water absorption of LWAC. Total replacement of natural sand by bottom ash increased the absorption of the concrete by 63-90%. With regard to abrasion resistance, the abrasion resistance of lightweight aggregate concrete was mainly dependent on the compressive strength of concrete: the higher the strength, the higher the abrasion resistance of LWAC. In addition, the use of bottom ash as a fine aggregate resulted in a lower abrasion resistance of lightweight aggregate concrete due to its porosity. Of the three types of lightweight materials, MTEC LA had achieved both low density and high compressive strength.


Sign in / Sign up

Export Citation Format

Share Document