Crack-Width-Based Sectional Analysis of Fiber-Reinforced Concrete Applied to the Structural Design of the Slab of a Fly-Over Bridge

2022 ◽  
Vol 27 (1) ◽  
Author(s):  
M. Rivera ◽  
A. Enfedaque ◽  
M. G. Alberti ◽  
J. C. Gálvez ◽  
J. M. Simón-Talero
Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1682 ◽  
Author(s):  
Jun Zhao ◽  
Jingchao Liang ◽  
Liusheng Chu ◽  
Fuqiang Shen

Many researchers have performed experimental and theoretical studies on the shear behavior of steel fiber reinforced concrete (SFRC) beams with conventional reinforcement; few studies involve the shear behavior of SFRC beams with high-strength reinforcement. In this paper, the shear test of eleven beams with high-strength reinforcement was carried out, including eight SFRC beams and three reinforced concrete (RC) beams. The load-deflection curve, concrete strain, stirrup strain, diagonal crack width, failure mode and shear bearing capacity of the beams were investigated. The test results show that steel fiber increases the stiffness, ultimate load and failure deformation of the beams, but the increase effect of steel fiber decreases with the increase of stirrup ratio. After the diagonal crack appears, steel fiber reduces the concrete strains of the diagonal section, stirrup strains and diagonal crack width. In addition, steel fiber reduces crack height and increases crack number. Finally, the experimental values of the shear capacities were compared with the values calculated by CECS38:2004 and ACI544.4R, and the equation of shear capacity in CECS38:2004 was modified to effectively predict the shear capacities of SFRC beams with high-strength reinforcement.


Fibers ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 43
Author(s):  
Zhiyun Deng ◽  
Xinrong Liu ◽  
Ninghui Liang ◽  
Albert de la Fuente ◽  
Haoyang Peng

The bending performance of a basalt-polypropylene fiber-reinforced concrete (HBPFRC) was characterized by testing 24,400 × 100 × 100 mm3 prismatic specimens in a four-point bending test JSCE-SF4 configuration. The type and content of both fibers were varied in order to guarantee different target levels of post-cracking flexural performance. The results evidenced that mono-micro basalt fiber reinforced concrete (BFRC) allows the increase of the flexural strength (pre-cracking stage), while macro polypropylene fiber reinforced concrete (PPFRC) can effectively improve both bearing capacity and ductility of the composite for a wide crack width range. Compared with the plain concrete specimens, flexural toughness and equivalent flexural strength of macro PPFRC and the hybrid fiber-reinforced concrete (HFRC) increased by 3.7–7.1 times and 10–42.5%, respectively. From both technical and economic points of view, the optimal mass ratio of basalt fiber (BF) to polypropylene fiber (PPF) resulted in being 1:2, with a total content of 6 kg/m3. This HFRC is seen as a suitable material to be used in sewerage pipes where cracking control (crack formation and crack width control) is of paramount importance to guarantee the durability and functionality of the pipeline as well as the ductility of the system in case of local failures.


Author(s):  
Evelina Khakimova ◽  
H. Celik Ozyildirim ◽  
Devin K. Harris

Concrete cracking, high permeability, and leaking joints allow harmful solutions to intrude into concrete, resulting in concrete deterioration and corrosion of reinforcement. The development of durable concrete with limited cracking is a potential solution for extending the service life of concrete structures. Optimal design of very early strength (VES) durable materials will facilitate rapid and effective repairs and thus reduce traffic interruptions and maintenance work. The purpose of this study was to develop low-cracking durable materials that could achieve a very early compressive strength of 3,000 pounds per square inch within 10 h. Various proportions of silica fume, fly ash, steel fibers, and polypropylene fibers were used to evaluate concrete durability and postcracking performance. In addition, toughness, residual strength, permeability of cracked concrete, and fiber distribution were examined. VES durable concretes could be achieved with proper attention to mixture components (amounts of portland cement and accelerating admixtures), proportions (water–cementitious material ratio), and fresh concrete and curing temperatures. Permeability values indicated that minor increases in crack width, greater than 0.1 mm, greatly increased infiltration of solutions. Adding fibers could facilitate control of crack width. An investigation of fiber distribution showed preferential alignment and some clumping of fibers in the specimens and highlighted the need for sufficient mixing and proper sequencing of the addition of concrete ingredients into the mixer to ensure a uniform random fiber distribution. Results indicated that VES and durable fiber-reinforced concrete materials could be developed to improve the condition of existing and new structures and facilitate rapid, effective repairs and construction.


2021 ◽  
Author(s):  
Murray J. Watts ◽  
Ali Amin ◽  
Raymond I. Gilbert ◽  
Walter Kaufmann ◽  
Fausto Minelli

2021 ◽  
Author(s):  
Eline Vandecruys ◽  
Maure De Smedt ◽  
Rutger Vrijdaghs ◽  
Els Verstrynge ◽  
Lucie Vandewalle

Sign in / Sign up

Export Citation Format

Share Document