Long-Term Use of Diatomite Slope Embankments in Warm Permafrost Regions

2017 ◽  
Vol 31 (3) ◽  
pp. 04017003
Author(s):  
Ji Chen ◽  
Ziliang Feng ◽  
Yu Sheng ◽  
Lei Liu ◽  
Jing Li
2017 ◽  
Author(s):  
Nicholas C. Parazoo ◽  
Charles D. Koven ◽  
David M. Lawrence ◽  
Vladimir Romanovsky ◽  
Charles E. Miller

Abstract. Thaw and release of permafrost carbon (C) due to climate change is likely to offset increased vegetation C uptake in Northern High Latitude (NHL) terrestrial ecosystems. Models project that this permafrost C feedback may act as a slow leak, in which case detection and attribution of the feedback may be difficult. The formation of talik, a sub-surface layer of perennially thawed soil, can accelerate permafrost degradation and soil respiration, ultimately shifting the C balance of permafrost affected ecosystems from long-term C sinks to long-term C sources. It is imperative to understand and characterize mechanistic links between talik, permafrost thaw, and respiration of deep soil C to detect and quantify the permafrost C feedback. Here, we use the Community Land Model (CLM) version 4.5, a permafrost and biogeochemistry model, in comparison to long term deep borehole data along North American and Siberian transects, to investigate thaw driven C sources in NHL (> 55° N) from 2000–2300. Widespread talik at depth IS projected across most of the NHL permafrost region (14 million km2) by 2300, correlated to increased cold season warming, earlier spring thaw, and growing active layers. Talik formation peaks in the 2050s in warm permafrost regions in the sub-Arctic. Comparison to borehole data suggests talik formation may even occur sooner. Accelerated decomposition of deep soil C following talik onset shifts the surface balance of photosynthetic uptake and litter respiration into long-term C sources across 3.2 million km2 of permafrost. Talik driven sources occur predominantly in warm permafrost, but sink-to-source transition dates are delayed by decades to centuries due to high ecosystem productivity. In contrast, most of the cold permafrost region in the northern Arctic (3 million km2) shifts to a net source by the end of the 21st century in the absence of talik due to the high decomposition rates of shallow, young C in organic rich soils coupled with low productivity. Our results provide important clues signaling imminent talik onset and C source transition including: (1) late cold season (Jan–Feb) soil warming at depth (~ 2 m), (2) increasing cold season emissions (Nov–Apr), (3) enhanced respiration of deep, old C in warm permafrost and young, shallow C in organic rich cold permafrost soils. Our results suggest a mosaic of processes that govern carbon source-to-sink transitions at high latitudes, and emphasize the urgency of monitoring soil thermal profiles, organic C age and content, cold season CO2 emissions, and atmospheric 14CO2 as key indicators of the permafrost C feedback.


2015 ◽  
Vol 58 (9) ◽  
pp. 1669-1676 ◽  
Author(s):  
FuJun Niu ◽  
MingHao Liu ◽  
GuoDong Cheng ◽  
ZhanJu Lin ◽  
Jing Luo ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Minghao Liu ◽  
Jing Luo ◽  
Liang Zhang ◽  
Xin Ju

A crushed-rock revetment (CRR) with high permeability that can be paved on embankment slopes is widely used to cool and protect the subgrade permafrost. In this study, a traditional CRR over warm permafrost was selected to investigate its cooling characteristics based on the ground temperature observed from 2003 to 2014. A new mitigation structure (NMS) was designed to improve the cooling capacity of the CRR and to counter the pore-filling of the rock layer. Numerical simulations were conducted to evaluate the cooling performance and reinforcing capacity of the NMS based on a developed heat and mass transfer model. The results indicate that the traditional CRR can improve the symmetry of the permafrost subgrade and decrease the ground temperature of shallow permafrost. However, the CRR cannot generate strong enough cooling to influence the deep (below 10 m depth) and warm permafrost with a mean annual ground temperature above −1.0°C. The wind-blown sand can further weaken the cooling of the CRR and cause significant permafrost warming and thawing beneath the slopes, posing a severe threat to the long-term safe operation of the embankment. The proposed NMS can produce a significantly superior cooling performance to the CRR. If the CRR is reinforced by the new structure, it can not only effectively cool the underlying warm permafrost but also elevate the permafrost table. The new structure can also protect the rock layer on the slopes from sand-filling. The NMS can be used as an effective method for roadbed design or maintenance over warm permafrost.


2010 ◽  
Vol 63 (1-2) ◽  
pp. 78-86 ◽  
Author(s):  
Yaling Chou ◽  
Yu Sheng ◽  
Yuwen Li ◽  
Zhenming Wei ◽  
Yanpeng Zhu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document