Assessment of Flexible Pavement Response during Partial Thawing Conditions Using Accelerated Pavement Testing

2020 ◽  
Vol 34 (2) ◽  
pp. 04020007
Author(s):  
Jean-Pascal Bilodeau ◽  
Junyan Yi ◽  
Guy Doré
2013 ◽  
Vol 2363 (1) ◽  
pp. 113-121 ◽  
Author(s):  
Xiaochao Tang ◽  
Angelica M. Palomino ◽  
Shelley M. Stoffels

Numerous studies have revealed the benefits of using geogrids in a flexible pavement, especially for reducing permanent deformation. One of the questions that remain about the effectiveness of a geogrid in reinforcing of pavement is the extent to which the geogrid is engaged and mobilized throughout its service. This paper presents results of a laboratory study on various geogrid products embedded in flexible-pavement sections. The laboratory-scale pavement sections were subjected to cyclic moving wheel loads by using reduced-scale accelerated pavement testing (APT). During the APT, strains that developed in the geogrids were measured at intervals of loading applications by strain gauges installed in pairs on the upper and lower surfaces of the geogrid ribs. Permanent deformation of the subgrade was also measured at the same intervals of loading applications. The measurements of geogrid strains throughout the construction process indicated that the construction resulted in a considerable prestressing effect on the geogrids. Measurements from the individual strain gauges in pairs showed that the gauges installed on the upper surfaces of the ribs were in compression while those on the lower surfaces were in tension; the situation suggested a significant effect on the flexural deflection of the ribs on the tensile strain measurements from the strain gauges. Furthermore, it was observed that geogrid ribs in the longitudinal direction of traffic loading were not mobilized, while considerable strains were developed in geogrid ribs in the direction transverse to traffic loading. A clear correlation was found between the reinforcing forces developed in the geogrids and the performance of the reinforced subgrade in relation to resisting permanent deformation.


Author(s):  
Issam I. A. Qamhia ◽  
Erol Tutumluer ◽  
Hasan Ozer ◽  
Heather Shoup ◽  
Sheila Beshears ◽  
...  

Research conducted at the Illinois Center for Transportation evaluated sustainable applications of quarry byproducts (QB) or QB blended with coarse recycled aggregates in chemically stabilized base and subbase layers in flexible pavements. In total, eight full-scale test sections, including one conventional flexible pavement with no QB as the control section, were constructed over a subgrade with an engineered strength of 6% California bearing ratio. The test sections were stabilized with either 3% Type I Portland cement or 10% Class C fly ash by dry weight. Fractionated reclaimed asphalt pavements and fractionated recycled concrete aggregates were also used as the recycled coarse aggregates. Based on laboratory tests conducted to determine strength properties of the chemically stabilized samples, QB and recycled aggregates were blended in a ratio of 70% to30% by weight, respectively. A lightweight deflectometer was used to evaluate the quality of the construction and the curing of the test sections. The constructed test sections were then evaluated for performance through accelerated pavement testing (APT) and frequent measurement of surface deformations. The results of APT showed quite a satisfactory rutting performance of all the evaluated QB applications with no observed surface cracking after 135,000 cycles. Four of the test sections were also instrumented with soil pressure cells to measure the wheel load deviator stress on top of the subgrade. The pressure measurements indicated subgrade pressures 3−5 times lower for the stabilized QB sections compared with that of the conventional flexible pavement control section.


2019 ◽  
Vol 46 (6) ◽  
pp. 501-510 ◽  
Author(s):  
Jean-Pascal Bilodeau ◽  
Damien Grellet ◽  
Guy Doré ◽  
Maurice Phénix

Agricultural field equipment are typically equipped with wide single tires with particular tire tread and low inflation working pressures. Because of the significant differences with standard truck tires, the effect of flotation implement tire on pavement performance and load associated damage is likely to differ. This paper presents the results of an experimental research project where flotation tires were used to test the response of an instrumented flexible pavement built in an indoor test pit. The effect of load, tire pressure, and tire type was investigated as part of the study. Based on the collected results, the tire type and design greatly influence the pavement response. The critical and governing pavement damage mechanism was found to be subgrade structural rutting. Wide specialty tires were found to generally induce less damage than standard truck tires. A method for axle weight adjustment for wide farm tires was proposed as part of the project.


Sign in / Sign up

Export Citation Format

Share Document