Entropy for Determination of Suspended Sediment Concentration: Parameter Related to Granulometry

2018 ◽  
Vol 144 (3) ◽  
pp. 04017111 ◽  
Author(s):  
Patricia Diniz Martins ◽  
Cristiano Poleto
2014 ◽  
Vol 7 (1-2) ◽  
pp. 23-28 ◽  
Author(s):  
Aderemi Adediji ◽  
Olutoyin A. Fashae

Abstract The sediment dynamics in a small 2nd order catchment of River Awba in the territory of the University of Ibadan, Nigeria was investigated between January and December 2012. The river was gauged by daily measurements of water level as well as sampling of water for determination of suspended sediment load. In this regard, apart from weekly sample, twelve (12) storm flow events which occurred during the day were sampled for determination of suspended sediment concentration. The results showed that during the storms the suspended sediment concentration varied between 636 mg/l in May and 3641.5 mg/l in September, with a mean of 2136.8 mg/l. Also, the value of monthly suspended sediment yield ranged from 10.85 kg in January to 288.4 kg in October with a mean of 89.5 kg. The variability in monthly sediment load closely followed the trend of monthly rainfall in the study area. However, in order to minimize the storm runoff and sediment load generated from the rainstorms events, the paved surfaces within the study catchment should be grassed with the planting of some few tree species. This could further reduce the rate of floods occurrence.


Author(s):  
Bogusław Michalec

Appraisal of suspended sediment concentration on reference level according to van Rijn's method Appraisal of suspended sediment concentration on reference level according to van Rijn's method. The paper presents the results of sediment concentration measurements in the River Dłubnia at differentiated discharges of 0.44 m-3·s-1, 1.96 m-3·s-1 and 7.41 m-3·s-1. The elaborated concentration profiles based on hydrometric measurements permitted determination of Ca concentration on reference level "a" above the bed. The obtained reference concentrations were compared with the values obtained from calculations by use of van Rijn's formula. It was found that the calculated Ca concentration, applying the van Rijn's formula, is over five times higher than determined from concentration profiles. In order to obtain Ca concentration values, calculated by use of the empiric formula, approximate to real values coefficient correction must be determined. The elaborated preliminary estimation of the possibility of van Rijn's formula application for determination of this concentration on the reference level "a" above the bed showed that application of this method for appraisal of Ca concentration, by use van Rijn's formula, performed in the Dłubnia river of the catchment of the Upper Vistula river may be charged by errors. A faulty calculation of suspension sediment transport applying van Rijn's method may also point to it. Adoption of this method needs further verification and adaptation.


2013 ◽  
Vol 40 (4) ◽  
pp. 299-312 ◽  
Author(s):  
A. Adib ◽  
H. Jahanbakhshan

Because of the interaction between tidal and fluvial flows in tidal rivers, sampling and measurement of suspended sediment concentration is very complex. Determination of suspended sediment concentration in tidal rivers is a very important problem in some countries such as Canada and United Kingdom (UK) (for example Bay of Fundy in Canada and Bristol Channel in UK). A numerical model cannot show suspended sediment concentration in tidal river accurately. Fluvial flows bring sand and gravel particles from the watershed, while tidal flow brings silt particles from the sea in flood time and returns them to the sea in ebb time. Interaction between tidal and fluvial flows, relation between suspended sediment concentration and return periods of them, correction of suspended sediment distribution coefficient for use in tidal limit of rivers, finding the best method for determination of suspended sediment concentration in tidal limit of rivers and optimization of it are major difficulties and challenges for determination of suspended sediment concentration. For overcoming these challenges in this research, a perceptron artificial neural network is trained and validated by observed data. For training of the artificial neural network (ANN), Levenberg–Marquardt training method is applied. For decreasing of the mean square error (MSE) and increasing of efficiency coefficient, parameters of ANN are optimized by genetic algorithm (GA) method. The GA method optimizes the number of nodes of hidden layers of ANN that is trained by Levenberg–Marquardt training method. Two sets of data are introduced into a network. Inputs of first network are distance from upstream of river, flood return period, and tide return period. These return periods are determined by observed data and governing stochastic distribution on them. Inputs of second network are distance from upstream of river, flood discharge, and ebb height. Output of these networks is suspended sediment concentration. Observed data show that maximum suspended sediment concentration is concerned with ebb that tidal flow and fluvial flow are in one direction. Because of a shortage of observed data especially in extreme conditions, a numerical model was developed. This model was calibrated by observed data. Results of numerical model convert to two regression relations. These relations are functions of distance from the upstream of river, discharge of flood (or flood return period) at upstream, and ebb height (or ebb return period) at downstream. Then the artificial neural network is tested with the remainder of observed data and results of the numerical model. Sensitive analysis shows that distance from the upstream of river and flood discharge are the most effective governing factors on suspended sediment concentration in first and second network, respectively. For the case study, the Karun River in south west of Iran is considered. This river is the most important tidal river in Iran.


2013 ◽  
Vol 11 (4) ◽  
pp. 457-466

Artificial neural networks are one of the advanced technologies employed in hydrology modelling. This paper investigates the potential of two algorithm networks, the feed forward backpropagation (BP) and generalized regression neural network (GRNN) in comparison with the classical regression for modelling the event-based suspended sediment concentration at Jiasian diversion weir in Southern Taiwan. For this study, the hourly time series data comprised of water discharge, turbidity and suspended sediment concentration during the storm events in the year of 2002 are taken into account in the models. The statistical performances comparison showed that both BP and GRNN are superior to the classical regression in the weir sediment modelling. Additionally, the turbidity was found to be a dominant input variable over the water discharge for suspended sediment concentration estimation. Statistically, both neural network models can be successfully applied for the event-based suspended sediment concentration modelling in the weir studied herein when few data are available.


Sign in / Sign up

Export Citation Format

Share Document