Ground Control Monitoring in Backfilled Strip Mining under the Metropolitan District: Case Study

2018 ◽  
Vol 18 (7) ◽  
pp. 05018003 ◽  
Author(s):  
Tongbin Zhao ◽  
Shuqi Ma ◽  
Zhenyu Zhang
Keyword(s):  
2020 ◽  
Vol 12 (14) ◽  
pp. 2232
Author(s):  
Manuela Persia ◽  
Emanuele Barca ◽  
Roberto Greco ◽  
Maria Immacolata Marzulli ◽  
Patrizia Tartarino

Georeferenced archival aerial images are key elements for the study of landscape evolution in the scope of territorial planning and management. The georeferencing process proceeds by applying to photographs advanced digital photogrammetric techniques integrated along with a set of ground truths termed ground control points (GCPs). At the end of that stage, the accuracy of the final orthomosaic is assessed by means of root mean square error (RMSE) computation. If the value of that index is deemed to be unsatisfactory, the process is re-run after increasing the GCP number. Unfortunately, the search for GCPs is a costly operation, even when it is visually carried out from recent digital images. Therefore, an open issue is that of achieving the desired accuracy of the orthomosaic with a minimal number of GCPs. The present paper proposes a geostatistically-based methodology that involves performing the spatialization of the GCP errors obtained from a first gross version of the georeferenced orthomosaic in order to produce an error map. Then, the placement of a small number of new GCPs within the sub-areas characterized by the highest local errors enables a finer georeferencing to be achieved. The proposed methodology was applied to 67 historical photographs taken on a geo-morphologically complex study area, located in Southern Italy, which covers a total surface of approximately 55,000 ha. The case study showed that 75 GCPs were sufficient to garner an orthomosaic with coordinate errors below the chosen threshold of 10 m. The study results were compared with similar works on georeferenced images and demonstrated better performance for achieving a final orthomosaic with the same RMSE at a lower information rate expressed in terms of nGCPs/km2.


2020 ◽  
Author(s):  
Sean Salazar ◽  
Helge Smebye ◽  
Regula Frauenfelder ◽  
Frank Miller ◽  
Emil Solbakken ◽  
...  

<p>The availability of consumer remotely piloted aircraft systems (RPAS) has enabled rapidly deployable airborne surveys for civilian applications. Combined with photogrammetric reconstruction techniques, such as Structure-from-Motion (SfM), it has become increasingly feasible to survey large areas with very high resolution, especially when compared with other airborne or spaceborne surveying techniques. A pair of case studies, using an RPAS-based field surveying technique for establishing baseline surface models in steep terrain, are presented for two different natural hazard applications.</p><p>The first case study involved a survey over the entire 1000-m length of a snow-free avalanche path on Sætreskarsfjellet in Stryn municipality in Norway. A terrain-aware, multi-battery flight plan was designed to ensure good photographic coverage over the entire avalanche path and 21 ground control points (GCP) were distributed evenly across the path and subsequently surveyed. More than 400 images were collected over a 0.5 km<sup>2</sup> area, which were processed using a commercial SfM software package. Two digital surface models were reconstructed, each utilizing a different ground control scenario: the first one with the full count of GCP, while the second used only a limited count of GCP, which is more feasible for a repeat survey when avalanche hazard is high. Comparison with data from a pre-existing, airborne LiDAR survey over the avalanche path revealed that the SfM-derived model that utilized only a limited number of GCP diverged significantly from the model that utilized all available GCP. Further differences between the SfM- and LiDAR-derived surface models were observed in areas with very steep slopes and vegetative cover. The same methodology can subsequently be applied during the winter season, after extensive snowfall and/or avalanche events, to deduce relevant avalanche parameters such as snow height, snow distribution and drift, opening of cracks in the snow surface (e.g. for glide avalanches), and avalanche outlines.</p><p>The second case study involved a survey over the entire 1000-m length of a debris flow path at Årnes in Jølster, Norway. The Årnes flow, which caused one fatality, was one of the largest of several tens of debris flows that occurred on July 30, 2019. The flows were triggered by an extreme precipitation event around the Jølstravatnet area. Like with the Sætreskarsfjellet avalanche path case study, a terrain-aware flight plan was established and 24 GCP were distributed and surveyed along the debris flow path. Over 400 images were collected over a 0.3 km<sup>2</sup> area, which were used to reconstruct a high-resolution surface model. Like with the avalanche case study, the SfM-derived model was compared with a pre-existing LiDAR survey-derived digital terrain model. Altitude and volume changes, due to the debris flow event, were calculated using GIS analysis tools.</p><p>The utility of the RPAS survey technique was demonstrated in both case studies, despite difficult accessibility for ground control. It is suggested that a real-time-kinematic (RTK)-enabled workflow may significantly reduce survey time and increase personnel safety by minimizing the number of required GCP.</p><p><strong>Keywords</strong>: Structure-from-Motion, photogrammetry, digital surface model, natural hazards, ground control.</p>


2018 ◽  
Vol 10 (10) ◽  
pp. 1606 ◽  
Author(s):  
Enoc Sanz-Ablanedo ◽  
Jim Chandler ◽  
José Rodríguez-Pérez ◽  
Celestino Ordóñez

The geometrical accuracy of georeferenced digital surface models (DTM) obtained from images captured by micro-UAVs and processed by using structure from motion (SfM) photogrammetry depends on several factors, including flight design, camera quality, camera calibration, SfM algorithms and georeferencing strategy. This paper focusses on the critical role of the number and location of ground control points (GCP) used during the georeferencing stage. A challenging case study involving an area of 1200+ ha, 100+ GCP and 2500+ photos was used. Three thousand, four hundred and sixty-five different combinations of control points were introduced in the bundle adjustment, whilst the accuracy of the model was evaluated using both control points and independent check points. The analysis demonstrates how much the accuracy improves as the number of GCP points increases, as well as the importance of an even distribution, how much the accuracy is overestimated when it is quantified only using control points rather than independent check points, and how the ground sample distance (GSD) of a project relates to the maximum accuracy that can be achieved.


Sign in / Sign up

Export Citation Format

Share Document