scholarly journals Accuracy of Unmanned Aerial Vehicle (UAV) and SfM Photogrammetry Survey as a Function of the Number and Location of Ground Control Points Used

2018 ◽  
Vol 10 (10) ◽  
pp. 1606 ◽  
Author(s):  
Enoc Sanz-Ablanedo ◽  
Jim Chandler ◽  
José Rodríguez-Pérez ◽  
Celestino Ordóñez

The geometrical accuracy of georeferenced digital surface models (DTM) obtained from images captured by micro-UAVs and processed by using structure from motion (SfM) photogrammetry depends on several factors, including flight design, camera quality, camera calibration, SfM algorithms and georeferencing strategy. This paper focusses on the critical role of the number and location of ground control points (GCP) used during the georeferencing stage. A challenging case study involving an area of 1200+ ha, 100+ GCP and 2500+ photos was used. Three thousand, four hundred and sixty-five different combinations of control points were introduced in the bundle adjustment, whilst the accuracy of the model was evaluated using both control points and independent check points. The analysis demonstrates how much the accuracy improves as the number of GCP points increases, as well as the importance of an even distribution, how much the accuracy is overestimated when it is quantified only using control points rather than independent check points, and how the ground sample distance (GSD) of a project relates to the maximum accuracy that can be achieved.

Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2318 ◽  
Author(s):  
Martin Štroner ◽  
Rudolf Urban ◽  
Tomáš Reindl ◽  
Jan Seidl ◽  
Josef Brouček

Using a GNSS RTK (Global Navigation Satellite System Real Time Kinematic) -equipped unmanned aerial vehicle (UAV) could greatly simplify the construction of highly accurate digital models through SfM (Structure from Motion) photogrammetry, possibly even avoiding the need for ground control points (GCPs). As previous studies on this topic were mostly performed using fixed-wing UAVs, this study aimed to investigate the results achievable by a quadrocopter (DJI Phantom 4 RTK). Three image acquisition flights were performed for two sites of a different character (urban and rural) along with three calculation variants for each flight: georeferencing using ground-surveyed GCPs only, onboard GNSS RTK only, and a combination thereof. The combined and GNSS RTK methods provided the best results (at the expected level of accuracy of 1–2 GSD (Ground Sample Distance)) for both the vertical and horizontal components. The horizontal positioning was also accurate when georeferencing directly based on the onboard GNSS RTK; the vertical component, however, can be (especially where the terrain is difficult for SfM evaluation) burdened with relatively high systematic errors. This problem was caused by the incorrect identification of the interior orientation parameters calculated, as is customary for non-metric cameras, together with bundle adjustment. This problem could be resolved by using a small number of GCPs (at least one) or quality camera pre-calibration.


Author(s):  
P. Trusheim ◽  
C. Heipke

Abstract. Localization is one of the first steps in navigation. Especially due to the rapid development in automated driving, a precise and reliable localization becomes essential. In this paper, we report an investigation of the usage of dynamic ground control points (GCP) in visual localization in an automotive environment. Instead of having fixed positions, dynamic GCPs move together with the camera. As a measure of quality, we employ the precision of the bundle adjustment results. In our experiments, we simulate and investigate different realistic traffic scenarios. After investigating the role of tie points, we compare an approach using dynamic GCPs to an approach with static GCPs to answer the question how a comparable precision can be reached for visual localization. We show, that in our scenario, where two dynamic GCPs move together with a camera, similar results are indeed obtained to using a number of static GCPs distributed over the whole trajectory. In another experiment, we take a closer look at sliding window bundle adjustments. Sliding windows make it possible to work with an arbitrarily large number of images and to still obtain near real-time results. We investigate this approach in combination with dynamic GCPs and vary the no. of images per window.


2018 ◽  
Author(s):  
Servet Yaprak ◽  
Omer Yildirim ◽  
Tekin Susam ◽  
Samed Inyurt ◽  
Irfan Oguz

Abstract. This study used the Unmanned Aerial Vehicle (UAV), which was designed and produced to monitor rapidly occurring landslides in forest areas. It was aimed to determine the location data for the study area using image sensors integrated into the UAV. The study area was determined as the landslide sites located in the Taşlıçiftlik Campus of Gaziosmanpaşa University, Turkey. It was determined that landslide activities were on going in the determined study area and data was collected regarding the displacement of materials. Additionally, it was observed that data about landslides may be collected in a fast and sensitive way using UAVs, and this method is proposed as a new approach. Flights took place over a total of five different periods. In order to determine the direction and coordinate variables for the developed model, eight Ground Control Points (GCPs), whose coordinates were obtained with the GNSS method, were placed on the study area. In each period, approximately 190 photographs were investigated. The photos obtained were analysed using the PIX4D software. At the end of each period, the RMS and Ground Sample Distance (GSD) values of the GCPs were calculated. Orthomosaic and Digital Surface Models (DSM) were produced for the location and height model. The results showed that max RMS = ±3.3 cm and max GSD = 3.57 cm/1.40 in. When the first and fifth periods are compared; the highest spatial displacement value ΔS = 111.0 cm, the highest subsidence value Δh = 37.3 cm and the highest swelling value Δh = 28.6 cm as measured.


2020 ◽  
Vol 12 (15) ◽  
pp. 2447 ◽  
Author(s):  
Ezequiel Ferrer-González ◽  
Francisco Agüera-Vega ◽  
Fernando Carvajal-Ramírez ◽  
Patricio Martínez-Carricondo

Unmanned aerial vehicle (UAV) photogrammetry has recently emerged as a popular solution to obtain certain products necessary in linear projects, such as orthoimages or digital surface models. This is mainly due to its ability to provide these topographic products in a fast and economical way. In order to guarantee a certain degree of accuracy, it is important to know how many ground control points (GCPs) are necessary and how to distribute them across the study site. The purpose of this work consists of determining the number of GCPs and how to distribute them in a way that yields higher accuracy for a corridor-shaped study area. To do so, several photogrammetric projects have been carried out in which the number of GCPs used in the bundle adjustment and their distribution vary. The different projects were assessed taking into account two different parameters: the root mean square error (RMSE) and the Multiscale Model to Model Cloud Comparison (M3C2). From the different configurations tested, the projects using 9 and 11 GCPs (4.3 and 5.2 GCPs km−1, respectively) distributed alternatively on both sides of the road in an offset or zigzagging pattern, with a pair of GCPs at each end of the road, yielded optimal results regarding fieldwork cost, compared to projects using similar or more GCPs placed according to other distributions.


2020 ◽  
Vol 72 (3) ◽  
pp. 490-500
Author(s):  
Henrique Lopes Siqueira ◽  
José Marcato Junior ◽  
Edson Takashi Matsubara ◽  
Reinaldo Almeida Colares ◽  
Fabio Martins Santos

Apesar da popularização do uso de aeronaves remotamente pilotadas (RPA) como ferramentas para produção de produtos fotogramétricos e cartográficos digitais, pouco se fala a respeito da acurácia de tais produtos no contexto de terrenos acidentados, onde a diferença abrupta de altitudes gera uma maior complexidade na modelagem do relevo e consequentemente na geração das ortofotos. O objetivo desse trabalho é apresentar a avaliação e classificação baseado no PEC-PCD (Padrão de Exatidão Cartográfica para Produtos Cartográficos Digitais) de ortofotomosaicos e modelos digitais de superfície (DSM) gerados para uma mesma área de mineração. Para esse estudo utilizamos imagens RGB (não métrica) com GSD (Ground Sample Distance) estimado de 2,45 cm, e sobreposição de 80%/80%, captadas por RPA do tipo multirotor em dois voos idênticos realizados em datas distintas, para cada voo foram utilizados 15 alvos pré-sinalizados dos quais foram coletadas as coordenadas X, Y e Z com auxilio de equipamento GNSS RTK. Cinco experimentos foram realizados, variando o número de GCP (Ground Control Points) e mantendo o número de CP (Check Points). Os produtos (ortofotomosaicos e DSM) gerados com as diferentes configurações de GCP, foram avaliados com base no PEC-PCD e, analisando os resultados obtidos foi possível constatar a variação de escala na qual os produtos se enquadram, esse fato foi atribuído à quantidade e disposição (geometria) dos GCP. De forma geral, os produtos gerados com 6 e 8 GCP apresentaram níveis de acurácia semelhantes entre si e foram classificados como Classe A para a escala 1:1000.


Author(s):  
M. V. Peppa ◽  
J. P. Mills ◽  
P. Moore ◽  
P. E. Miller ◽  
J. E. Chambers

Landslides are hazardous events with often disastrous consequences. Monitoring landslides with observations of high spatio-temporal resolution can help mitigate such hazards. Mini unmanned aerial vehicles (UAVs) complemented by structure-from-motion (SfM) photogrammetry and modern per-pixel image matching algorithms can deliver a time-series of landslide elevation models in an automated and inexpensive way. This research investigates the potential of a mini UAV, equipped with a Panasonic Lumix DMC-LX5 compact camera, to provide surface deformations at acceptable levels of accuracy for landslide assessment. The study adopts a self-calibrating bundle adjustment-SfM pipeline using ground control points (GCPs). It evaluates misalignment biases and unresolved systematic errors that are transferred through the SfM process into the derived elevation models. To cross-validate the research outputs, results are compared to benchmark observations obtained by standard surveying techniques. The data is collected with 6 cm ground sample distance (GSD) and is shown to achieve planimetric and vertical accuracy of a few centimetres at independent check points (ICPs). The co-registration error of the generated elevation models is also examined in areas of stable terrain. Through this error assessment, the study estimates that the vertical sensitivity to real terrain change of the tested landslide is equal to 9 cm.


Author(s):  
Z. Xiong ◽  
D. Stanley ◽  
Y. Xin

The approximate value of exterior orientation parameters is needed for air photo bundle adjustment. Usually the air borne GPS/IMU can provide the initial value for the camera position and attitude angle. However, in some cases, the camera’s attitude angle is not available due to lack of IMU or other reasons. In this case, the kappa angle needs to be estimated for each photo before bundle adjustment. The kappa angle can be obtained from the Ground Control Points (GCPs) in the photo. Unfortunately it is not the case that enough GCPs are always available. In order to overcome this problem, an algorithm is developed to automatically estimate the kappa angle for air photos based on phase only correlation technique. This function has been embedded in PCI software. Extensive experiments show that this algorithm is fast, reliable, and stable.


Author(s):  
P. Molina ◽  
M. Blázquez ◽  
J. Sastre ◽  
I. Colomina

In this paper, we present mapKITE, a new mobile, simultaneous terrestrial and aerial, geodata collection and post-processing method. On one side, the method combines a terrestrial mobile mapping system (TMMS) with an unmanned aerial mapping one, both equipped with remote sensing payloads (at least, a nadir-looking visible-band camera in the UA) by means of which aerial and terrestrial geodata are acquired simultaneously. This tandem geodata acquisition system is based on a terrestrial vehicle (TV) and on an unmanned aircraft (UA) linked by a 'virtual tether', that is, a mechanism based on the real-time supply of UA waypoints by the TV. By means of the TV-to-UA tether, the UA follows the TV keeping a specific relative TV-to-UA spatial configuration enabling the simultaneous operation of both systems to obtain highly redundant and complementary geodata. <br><br> On the other side, mapKITE presents a novel concept for geodata post-processing favoured by the rich geometrical aspects derived from the mapKITE tandem simultaneous operation. The approach followed for sensor orientation and calibration of the aerial images captured by the UA inherits the principles of Integrated Sensor Orientation (ISO) and adds the pointing-and-scaling photogrammetric measurement of a distinctive element observed in every UA image, which is a coded target mounted on the roof of the TV. By means of the TV navigation system, the orientation of the TV coded target is performed and used in the post-processing UA image orientation approach as a Kinematic Ground Control Point (KGCP). The geometric strength of a mapKITE ISO network is therefore high as it counts with the traditional tie point image measurements, static ground control points, kinematic aerial control and the new point-and-scale measurements of the KGCPs. With such a geometry, reliable system and sensor orientation and calibration and eventual further reduction of the number of traditional ground control points is feasible. <br><br> The different technical concepts, challenges and breakthroughs behind mapKITE are presented in this paper, such as the TV-to-UA virtual tether and the use of KGCP measurements for UA sensor orientation. In addition, the use in mapKITE of new European GNSS signals such as the Galileo E5 AltBOC is discussed. Because of the critical role of GNSS technologies and the potential impact on the corridor mapping market, the European Commission and the European GNSS Agency, in the frame of the European Union Framework Programme for Research and Innovation “Horizon 2020,” have recently awarded the “mapKITE” project to an international consortium of organizations coordinated by GeoNumerics S.L.


Sign in / Sign up

Export Citation Format

Share Document