Experimental Research on Strain Transfer Behavior of Fiber-Optic Cable Embedded in Soil Using Distributed Strain Sensing

2021 ◽  
Vol 21 (10) ◽  
pp. 04021190
Author(s):  
Su-Ping Liu ◽  
Kai Gu ◽  
Cheng-Cheng Zhang ◽  
Bin Shi
SPE Journal ◽  
2021 ◽  
pp. 1-10
Author(s):  
Ge Jin ◽  
Gustavo Ugueto ◽  
Magdalena Wojtaszek ◽  
Artur Guzik ◽  
Dana Jurick ◽  
...  

Summary The characteristics of hydraulic fractures in the near-wellbore region contain critical information related to the production performance of unconventional wells. We demonstrate a novel application of a fiber-optic-based distributed strain sensing (DSS) technology to measure and characterize near-wellbore fractures and perforation cluster efficiency during production. Distributed fiber-optic-based strain measurements are made based on the frequency shift of the Rayleigh scatter spectrum, which is linearly dependent on strain and temperature changes of the sensing fiber. Strain changes along the wellbore are continuously measured during the shut-in and reopening operations of a well. After removing temperature effects, extensional strain changes can be observed at locations around the perforation cluster during a shut-in period. We interpret that the observed strain changes are caused by near-wellbore fracture aperture changes caused by pressure increases within the near-wellbore fracture network. The depth locations of the measured strain changes correlate well with distributed acoustic sensing (DAS) acoustic intensity measurements that were measured during the stimulation of the well. The shape and magnitude of the strain changes differ significantly between two completion designs in the same well. Different dependencies between strain and borehole pressure can be observed at most of the perforation clusters between the shut-in and reopening periods. We assess that this new type of distributed fiber-optic measurement method can significantly improve understanding of near-wellbore hydraulic fracture characteristics and the relationships between stimulation and production from unconventional oil and gas wells.


Solid Earth ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 2487-2497
Author(s):  
Yi Zhang ◽  
Xinglin Lei ◽  
Tsutomu Hashimoto ◽  
Ziqiu Xue

Abstract. Drilling fluid infiltration during well drilling may induce pore pressure and strain perturbations in neighbored reservoir formations. In this study, we report that such small strain changes (∼20 µε) have been in situ monitored using fiber-optic distributed strain sensing (DSS) in two observation wells with different distances (approximately 3 and 9 m) from the new drilled wellbore in a shallow water aquifer. The results show the layered pattern of the drilling-induced hydromechanical deformation. The pattern could be indicative of (1) fluid pressure diffusion through each zone with distinct permeabilities or (2) the heterogeneous formation damage caused by the mud filter cakes during the drilling. A coupled hydromechanical model is used to interpret the two possibilities. The DSS method could be deployed in similar applications such as geophysical well testing with fluid injection (or extraction) and in studying reservoir fluid flow behavior with hydromechanical responses. The DSS method would be useful for understanding reservoir pressure communication, determining the zones for fluid productions or injection (e.g., for CO2 storage), and optimizing reservoir management and utilization.


2018 ◽  
Vol 18 (19) ◽  
pp. 8034-8044 ◽  
Author(s):  
Aidana Beisenova ◽  
Aizhan Issatayeva ◽  
Daniele Tosi ◽  
Carlo Molardi

Author(s):  
Thomas Reinsch ◽  
Philippe Jousset ◽  
Charlotte M. Krawczyk

2015 ◽  
Author(s):  
OSHER SHAPIRA ◽  
URI BEN-SIMON ◽  
ARIK BERGMAN ◽  
SHAY SHOHAM ◽  
BENNY GLAM ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document