Novel Near-Wellbore Fracture Diagnosis for Unconventional Wells Using High-Resolution Distributed Strain Sensing during Production

SPE Journal ◽  
2021 ◽  
pp. 1-10
Author(s):  
Ge Jin ◽  
Gustavo Ugueto ◽  
Magdalena Wojtaszek ◽  
Artur Guzik ◽  
Dana Jurick ◽  
...  

Summary The characteristics of hydraulic fractures in the near-wellbore region contain critical information related to the production performance of unconventional wells. We demonstrate a novel application of a fiber-optic-based distributed strain sensing (DSS) technology to measure and characterize near-wellbore fractures and perforation cluster efficiency during production. Distributed fiber-optic-based strain measurements are made based on the frequency shift of the Rayleigh scatter spectrum, which is linearly dependent on strain and temperature changes of the sensing fiber. Strain changes along the wellbore are continuously measured during the shut-in and reopening operations of a well. After removing temperature effects, extensional strain changes can be observed at locations around the perforation cluster during a shut-in period. We interpret that the observed strain changes are caused by near-wellbore fracture aperture changes caused by pressure increases within the near-wellbore fracture network. The depth locations of the measured strain changes correlate well with distributed acoustic sensing (DAS) acoustic intensity measurements that were measured during the stimulation of the well. The shape and magnitude of the strain changes differ significantly between two completion designs in the same well. Different dependencies between strain and borehole pressure can be observed at most of the perforation clusters between the shut-in and reopening periods. We assess that this new type of distributed fiber-optic measurement method can significantly improve understanding of near-wellbore hydraulic fracture characteristics and the relationships between stimulation and production from unconventional oil and gas wells.

2018 ◽  
Vol 115 (41) ◽  
pp. 10228-10232
Author(s):  
Niall J. O’Keeffe ◽  
Zhong Zheng ◽  
Herbert E. Huppert ◽  
P. F. Linden

The formation of a fracture network is a key process for many geophysical and industrial practices from energy resource recovery to induced seismic management. We focus on the initial stage of a fracture network formation using experiments on the symmetric coalescence of two equal coplanar, fluid-driven, penny-shaped fractures in a brittle elastic medium. Initially, the fractures propagate independently of each other. The fractures then begin to interact and coalesce, forming a bridge between them. Within an intermediate period after the initial contact, most of the fracture growth is localized along this bridge, perpendicular to the line connecting the injection sources. Using light attenuation and particle image velocimetry to measure both the fracture aperture and velocity field, we characterize the growth of this bridge. We model this behavior using a geometric volume conservation argument dependent on the symmetry of the interaction, with a 2D approximation for the bridge. We also verify experimentally the scaling for the bridge growth and the shape of the thickness profile along the bridge. The influence of elasticity and toughness of the solid, injection rate of the fluid, and initial location of the fractures are captured by our scaling.


Solid Earth ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 2487-2497
Author(s):  
Yi Zhang ◽  
Xinglin Lei ◽  
Tsutomu Hashimoto ◽  
Ziqiu Xue

Abstract. Drilling fluid infiltration during well drilling may induce pore pressure and strain perturbations in neighbored reservoir formations. In this study, we report that such small strain changes (∼20 µε) have been in situ monitored using fiber-optic distributed strain sensing (DSS) in two observation wells with different distances (approximately 3 and 9 m) from the new drilled wellbore in a shallow water aquifer. The results show the layered pattern of the drilling-induced hydromechanical deformation. The pattern could be indicative of (1) fluid pressure diffusion through each zone with distinct permeabilities or (2) the heterogeneous formation damage caused by the mud filter cakes during the drilling. A coupled hydromechanical model is used to interpret the two possibilities. The DSS method could be deployed in similar applications such as geophysical well testing with fluid injection (or extraction) and in studying reservoir fluid flow behavior with hydromechanical responses. The DSS method would be useful for understanding reservoir pressure communication, determining the zones for fluid productions or injection (e.g., for CO2 storage), and optimizing reservoir management and utilization.


2018 ◽  
Vol 18 (19) ◽  
pp. 8034-8044 ◽  
Author(s):  
Aidana Beisenova ◽  
Aizhan Issatayeva ◽  
Daniele Tosi ◽  
Carlo Molardi

Author(s):  
Thomas Reinsch ◽  
Philippe Jousset ◽  
Charlotte M. Krawczyk

2015 ◽  
Author(s):  
OSHER SHAPIRA ◽  
URI BEN-SIMON ◽  
ARIK BERGMAN ◽  
SHAY SHOHAM ◽  
BENNY GLAM ◽  
...  

2019 ◽  
Vol 9 (3) ◽  
pp. 417 ◽  
Author(s):  
Xinglin Lei ◽  
Ziqiu Xue ◽  
Tsutomu Hashimoto

In this study distributed fiber optic sensing has been used to measure strain along a vertical well of a depth of 300 m during a pumping test. The observed strain data has been used in geomechanical simulation, in which a combined analytical and numerical approach was applied in providing scaled-up formation properties. The outcomes of the field test have demonstrated the practical use of distributed fiber optic strain sensing for monitoring reservoir formation responses at different regions of sandstone–mudstone alternations along a continuous trajectory. It also demonstrated that sensitive and scaled rock properties, including the equivalent permeability and pore compressibility, can be well constrained by the combined use of water head and distributed strain data. In comparison with the conventional methods, fiber optic strain monitoring enables a lower number of short-term tests to be designed to calibrate the parameters used to model the rock properties. The obtained parameters can be directly used in long-term geomechanical simulation of deformation of reservoir rocks due to fluid injection or production at the CO2 storage and oil and gas fields.


Sign in / Sign up

Export Citation Format

Share Document