Effect of Steel Fibers on Bond Strength of Hooked Bars in High-Strength Concrete

2011 ◽  
Vol 23 (5) ◽  
pp. 673-681 ◽  
Author(s):  
Bilal S. Hamad ◽  
Elias Y. Abou Haidar
1987 ◽  
Vol 114 ◽  
Author(s):  
Methi Wecluat ◽  
Schboon Chimamphant

ABSTRACTIn recent years, the means of making high strength concrete are simple by adding microsilica, fly ash, or other types of additives. As the use of high strength concrete increases, the need to clearly understand its prcperties is essentially a necessity for engineering design. While much of the basic properties of high strength concrete such as compressive strength (fc), modulus of elasticity (Ec), and modulus of rupture (fr), etc., has been investigated and reported recently, many remain unavailable. This paper presents the bond strength characteristics of deformed bar, steel fibers, and normal aggregate in high strength concrete matrix. The compressive strength of concrete used in this study is 75–80 MPa (11,000-12,000 psi). Bond slip relationships of deformed bars of three different bar diameters were obtained from the pull-cut test. Two types of steel fiber reinforced high strength cemented composites were tested in a directtension, tapered specimen to observe the pulled-out behavior of steel fibers. Fiber reinforced concretes with fiber volume fraction of 0.5, 1.0, 1.5, and 2.0 % were compared to the unreinforced matrix. A direct-tension, dog boned specimen was used to study the bond between aggregate-matrix interface. The results from this study indicate that high strength concrete is generally more brittle, and in essence, allows less microcracking, less slippage, and less pulled-out deformation. This general trend is observed in both the deformed bar and fiber pulled-out as well as in aggregate-matrix interfacial debonding. The maximum slip of deformed bars in high strength concrete is about 0.15 mm.(0.006 in.) which is only one-tenth of that reported for normal concrete as 1.5 to 2.0 mm.(0.06–0.08 in.). A normalized pull-out stress-displacement relationship of high strength fiber reinforced concrete exhibits a unique behavior similar to those reported for normal fiber reinforced matrix.


2012 ◽  
Vol 40 ◽  
pp. 38-43 ◽  
Author(s):  
J. Barnaf ◽  
M. Bajer ◽  
M. Vyhnankova

2002 ◽  
Vol 29 (2) ◽  
pp. 191-200 ◽  
Author(s):  
M Alavi-Fard ◽  
H Marzouk

Structures located in seismic zones require significant ductility. It is necessary to examine the bond slip characteristics of high strength concrete under cyclic loading. The cyclic bond of high strength concrete is investigated under different parameters, including load history, confining reinforcement, bar diameter, concrete strength, and the rate of pull out. The bond strength, cracking, and deformation are highly dependent on the bond slip behavior between the rebar and the concrete under cyclic loading. The results of cyclic testing indicate that an increase in cyclic displacement will lead to more severe bond damage. The slope of the bond stress – displacement curve can describe the influence of the rate of loading on the bond strength in a cyclic test. Specimens with steel confinement sustained a greater number of cycles than the specimens without steel confinement. It has been found that the maximum bond strength increases with an increase in concrete strength. Cyclic loading does not affect the bond strength of high strength concrete as long as the cyclic slip is less than the maximum slip for monotonic loading. The behavior of high strength concrete under a cyclic load is slightly different from that of normal strength concrete.Key words: bond, high strength, cyclic loading, bar spacing, loading rate, failure mechanism.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Iakov Iskhakov ◽  
Yuri Ribakov

As known, high-strength compressed concrete elements have brittle behavior, and elastic-plastic deformations do not appear practically up to their ultimate limit state (ULS). This problem is solved in modern practice by adding fibers that allow development of nonlinear deformations in such elements. As a rule, are applied steel fibers that proved high efficiency and contribute ductile behavior of compressed high-strength concrete (HSC) elements as well as the desired effect at long-term loading (for other types of fibers, the second problem is still not enough investigated). However, accurate prediction of the ULS for abovementioned compression elements is still very important and current. With this aim, it is proposed to use transverse deformations in HSC to analyze compression elements' behavior at stages close to ultimate. It is shown that, until the appearance of nonlinear transverse deformations (cracks formation), these deformations are about 5-6 times lower than the longitudinal ones. When cracks appear, the tensile stress-strain relationship in the transverse direction becomes nonlinear. This fact enables to predict that the longitudinal deformations approach the ultimate value. Laboratory tests were carried out on 21 cylindrical HSC specimens with various steel fibers content (0, 20, 30, 40, and 60 kg/m3). As a result, dependences of transverse deformations on longitudinal ones were obtained. These dependences previously proposed by the authors’ concept of the structural phenomenon allow proper estimation of the compressed HSC state up to failure. Good agreement between experimental and theoretical results forms a basis for further development of modern steel fibered HSC theory and first of all nonlinear behavior of HSC.


Sign in / Sign up

Export Citation Format

Share Document