Effect of Oxidative Aging on Dynamic Modulus of Hot-Mix Asphalt Mixtures

2019 ◽  
Vol 31 (1) ◽  
pp. 04018348 ◽  
Author(s):  
Yong Wen ◽  
Yuhong Wang
2011 ◽  
Vol 2207 (1) ◽  
pp. 107-116 ◽  
Author(s):  
Nathan Morian ◽  
Elie Y. Hajj ◽  
Charles J. Glover ◽  
Peter E. Sebaaly

2019 ◽  
Vol 8 (4) ◽  
pp. 7001-7006

Premature pavement breakdown can be caused by permanent deformation that can contribute to lower riding comfort for road users and an increase in maintenance costs. Dynamic modulus Simple Performance Test (SPT) test are considered to be significant in describing the permanent deformation of hot mix asphalt. In this study, Marshall method of mix design were used in order to prepare four asphalt mixtures comprising different content of Nanopolyacrylate (NP) polymer (0%NP, 2%NP, 4%NP and 6%NP). This study was aimed to evaluate the influence of the NP modified mixture on the permanent deformation. The Performance Grade PG64-22 was obtained by mixing the conventional bitumen (PG64-22) with nanopolyacrylate. Dynamic Shear Rheometer (DSR) at different aging condition were conducted in order to characterise the bitumen performance. While, the Simple Performance Test (SPT) was used to characterize rutting and fatigue on Marshall HMA mixes. Results from the study presented that, NP modified bitumen has a significant impact on the dynamic and rutting resistance. The addition of nanopolyacrylate significantly enhances the rheological properties of asphalt bitumen. The results revealed that 4%NP has high potential to improve rutting and fatigue resistance


2020 ◽  
Vol 260 ◽  
pp. 120468 ◽  
Author(s):  
Javilla Barugahare ◽  
Armen N. Amirkhanian ◽  
Feipeng Xiao ◽  
Serji N. Amirkhanian

Author(s):  
Rafi Ullah ◽  
Imran Hafeez ◽  
Waqas Haroon ◽  
Safeer Haider

Asphalt pavement’s surfaces deteriorate over time due to combined effect of traffic and surrounding environment. Fatigue and rutting are the major distresses which cause failures in flexible pavements. Different temperature control computer operated equipment’s are being used worldwide to predict the performance of asphalt mixtures at approximately same condition to those in-service pavements. Similarly, different types of polymers such as elastomer and thermoplastic have been used all over the world in Hot Mix Asphalt (HMA) for the improvement of asphalt mixtures. But little attention has been taken to evaluate the effect of plastomer on hot mix asphalt performance. Moreover, the initial cost of elastomer is higher than other types of polymers such as plastomer. The aim of this research study is to check the effect of various plastomers on high/low temperature performance of asphalt mixture. Four performance tests like Cooper wheel tracker, dynamic modulus, uniaxial repeated load and four-point bending beam test are used to evaluate the effect of different type of plastomers such as polyethylene terephthalate, high density and low density polyethylene with limestone aggregate quarry and 60/70 pen grade asphalt binder. This research study concludes that plastomer increases flexibility and hardness of asphalt mixtures and improves the rut resistance, dynamic modulus and fatigue life of asphalt mixtures. Plastomer modification shows significant benefits as compared to neat binder for high/low temperature performance. Moreover, it can be concluded that plastomer provides an efficient and economical blend of asphalt mixture.


Author(s):  
Leila Hashemian ◽  
Vinicius Afonso Velasco Rios ◽  
Alireza Bayat

This study investigated the performance of different materials in a micro-trench composite backfilling design. Laboratory tests were conducted to evaluate the effect of cold temperatures and freeze/thaw cycles on a cement grout and seven preparatory cold asphalt mixes. To compare the performance of cold mix asphalt and epoxy grout with hot mix asphalt as the host material, rutting tests and dynamic modulus tests at different loading frequencies and temperatures were conducted. Finally, laboratory scale micro-trench samples were prepared using different backfilling materials and were loaded using a wheel tracker after freeze/thaw conditioning. The results showed that cement grout could effectively be used to secure the conduit inside the trench. It was also concluded that using high-quality cold mix asphalt, a compatible material with hot mix asphalt, could improve micro-trench durability compared with epoxy grout.


Sign in / Sign up

Export Citation Format

Share Document