scholarly journals Evaluating the Effect of Plastomer Modified Asphalt Mixture on High/Low Temperature Performance

Author(s):  
Rafi Ullah ◽  
Imran Hafeez ◽  
Waqas Haroon ◽  
Safeer Haider

Asphalt pavement’s surfaces deteriorate over time due to combined effect of traffic and surrounding environment. Fatigue and rutting are the major distresses which cause failures in flexible pavements. Different temperature control computer operated equipment’s are being used worldwide to predict the performance of asphalt mixtures at approximately same condition to those in-service pavements. Similarly, different types of polymers such as elastomer and thermoplastic have been used all over the world in Hot Mix Asphalt (HMA) for the improvement of asphalt mixtures. But little attention has been taken to evaluate the effect of plastomer on hot mix asphalt performance. Moreover, the initial cost of elastomer is higher than other types of polymers such as plastomer. The aim of this research study is to check the effect of various plastomers on high/low temperature performance of asphalt mixture. Four performance tests like Cooper wheel tracker, dynamic modulus, uniaxial repeated load and four-point bending beam test are used to evaluate the effect of different type of plastomers such as polyethylene terephthalate, high density and low density polyethylene with limestone aggregate quarry and 60/70 pen grade asphalt binder. This research study concludes that plastomer increases flexibility and hardness of asphalt mixtures and improves the rut resistance, dynamic modulus and fatigue life of asphalt mixtures. Plastomer modification shows significant benefits as compared to neat binder for high/low temperature performance. Moreover, it can be concluded that plastomer provides an efficient and economical blend of asphalt mixture.

2013 ◽  
Vol 834-836 ◽  
pp. 252-258
Author(s):  
Peng Ren ◽  
Bo Zhang ◽  
Ya Qiao Wang ◽  
Lu Zhang ◽  
Lin Zhao

Three kinds of combination schemes were designed about SMA-13 asphalt mixture. They were basalt aggregate SMA, limestone aggregate SMA, basalt and limestone aggregate SMA. Through the study of low temperature and high temperature test of three kinds of combination, the low temperature performance of basalt and limestone aggregate SMA was better than that of the basalt aggregate SMA; and the high temperature performance was in between, thus providing important experimental data for the limestones replacing basalt in SMA pavement.


2019 ◽  
Vol 3 (3) ◽  
pp. 72
Author(s):  
Md Rashadul Islam ◽  
Sylvester A. Kalevela ◽  
Guy Mendel

Hot-mix asphalt (HMA) is a composite material consisting of stone-aggregates, sand, asphalt binder and additives. The properties of this combined material are dependent on the volumetric parameters used in the mix design. This study investigates the effects of volumetric mix factors on the dynamic moduli (E*) of eleven categories of HMAs. For each category of asphalt mixture, the variations in dynamic modulus for different contractors, binder types, effective binder content (Vbe), air void (Va), voids-in-mineral aggregates (VMA), voids-filled-with asphalt (VFA) and asphalt content (AC) are assessed statistically. Results show that the S(100) mixture (nominal size of 19 mm, 100 gyrations) with the Performance Grade (PG) binder of PG 64-22 has the highest value of E* at low temperature or high reduced frequency. At high temperature or lower reduced frequency, S(100) PG 76-28 has the highest E* value. The SX(75) mixture (nominal size of 12.5 mm, 75 gyrations) with the binder of PG 64-28 has the lowest E* value at high temperature or lower reduced frequency. At low temperature or high reduced frequency, SX(75) PG 58-34 has the lowest E* value. The Stone Mix Asphalt (SMA) mix has a lower E* compared to S(100) and SX(100) mixes ((nominal size of 12.5 mm, 100 gyrations) with the Performance Grade (PG) binder of) at low temperature. The E* increases with an increase in Vbe, Va, and VFA, and decreases with an increase in VMA and AC. The E* of a mix can vary from 200 ksi (1380 MPa) to about 1000 ksi (6900 MPa) for a particular frequency (10 Hz) and temperature (21.1 °C), even if samples are from the same contractor.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Yulong Zhao ◽  
Ying Gao ◽  
Ke Zhang ◽  
Yao Zhang ◽  
Mingce Yu

The construction control indices were commonly used to ensure the quality of asphalt layers in the construction process. However, the relationship between the construction control indices and the low-temperature performance of asphalt layers is not clear. The purpose of this paper was to investigate the effect of the variations of the construction control indices on the low-temperature performance of asphalt mixtures to determine the key construction control indices, and propose the method for the monitoring of these indices using the Building Information Modeling (BIM) platform. The low-temperature performance of asphalt mixtures was evaluated by the semicircular bend (SCB) test. A new prediction model of critical strain energy release rate was established to evaluate the low-temperature performance of the asphalt layer. Five factors are considered for the low-temperature performance, which are the gradation and asphalt-aggregate ratio in the asphalt mixture plant, rolling temperature, gradation segregation, and temperature segregation. Orthogonal test (OT) results indicated that the order of importance of factors affecting the low-temperature performance is asphalt-stone ratio, gradation, and molding temperature. The influences of gradation segregation and temperature segregation on the low-temperature performance were quantified in this study. Furthermore, the construction control indices were monitored by the BIM platform developed in this research. In the construction process of the asphalt layer, the gradation variation caused by the segregation should be paid more attention to ensure the low-temperature performance of the pavement.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2036
Author(s):  
Dongzhao Jin ◽  
Dongdong Ge ◽  
Siyu Chen ◽  
Tiankai Che ◽  
Hongfu Liu ◽  
...  

Cold in-place recycling (CIR) asphalt mixtures are an attractive eco-friendly method for rehabilitating asphalt pavement. However, the on-site CIR asphalt mixture generally has a high air void because of the moisture content during construction, and the moisture susceptibility is vital for estimating the road service life. Therefore, the main purpose of this research is to characterize the effect of moisture on the high-temperature and low-temperature performance of a CIR asphalt mixture to predict CIR pavement distress based on a mechanistic–empirical (M-E) pavement design. Moisture conditioning was simulated by the moisture-induced stress tester (MIST). The moisture susceptibility performance of the CIR asphalt mixture (pre-mist and post-mist) was estimated by a dynamic modulus test and a disk-shaped compact tension (DCT) test. In addition, the standard solvent extraction test was used to obtain the reclaimed asphalt pavement (RAP) and CIR asphalt. Asphalt binder performance, including higher temperature and medium temperature performance, was evaluated by dynamic shear rheometer (DSR) equipment and low-temperature properties were estimated by the asphalt binder cracking device (ABCD). Then the predicted pavement distresses were estimated based on the pavement M-E design method. The experimental results revealed that (1) DCT and dynamic modulus tests are sensitive to moisture conditioning. The dynamic modulus decreased by 13% to 43% at various temperatures and frequencies, and the low-temperature cracking energy decreased by 20%. (2) RAP asphalt incorporated with asphalt emulsion decreased the high-temperature rutting resistance but improved the low-temperature anti-cracking and the fatigue life. The M-E design results showed that the RAP incorporated with asphalt emulsion reduced the international roughness index (IRI) and AC bottom-up fatigue predictions, while increasing the total rutting and AC rutting predictions. The moisture damage in the CIR pavement layer also did not significantly affect the predicted distress with low traffic volume. In summary, the implementation of CIR technology in the project improved low-temperature cracking and fatigue performance in the asphalt pavement. Meanwhile, the moisture damage of the CIR asphalt mixture accelerated high-temperature rutting and low-temperature cracking, but it may be acceptable when used for low-volume roads.


2012 ◽  
Vol 446-449 ◽  
pp. 2434-2438 ◽  
Author(s):  
Yi Qiu Tan ◽  
Da Qing Wang ◽  
Lei Zhang ◽  
Zhi Hui Li ◽  
Yu Xiang Qi

Abstract. To evaluate the low temperature performance of PR PLAST.S modified asphalt mixture, an analog experiment was adopted. It was found that it is not consistent between the evaluated results from TSRST and the content of PR PLAST.S can affect the low temperature performance of asphalt mixture. It also found that there is the optimal content to make asphalt mixture have the best low temperature performance.


2016 ◽  
Vol 18 (2) ◽  
pp. 297-314 ◽  
Author(s):  
Ki Hoon Moon ◽  
Augusto Cannone Falchetto ◽  
Di Wang ◽  
Michael P. Wistuba ◽  
Gabriele Tebaldi

2021 ◽  
Vol 11 (9) ◽  
pp. 4029
Author(s):  
Jian Wang ◽  
Pui-Lam Ng ◽  
Yuhua Gong ◽  
Han Su ◽  
Jinsheng Du

Porous asphalt mixture can be used as a road surface paving material with the remarkable advantage to prevent water accumulation and ponding. However, the performance of porous asphalt mixture in low temperature environment has not been thoroughly investigated, and this forms the subject of research in the present study. The mineral aggregate gradation of porous asphalt mixture was designed based on Bailey method, and the low temperature performance of porous asphalt mixture was studied by means of the low temperature bending test. The factors affecting the low temperature performance of porous asphalt mixture were analyzed through the orthogonal experimental design method, and the effects of porosity, modifier content, aging condition, and test temperature on the low temperature performance of porous asphalt mixture were evaluated. The results showed that the modifier content was the most important factor affecting the low temperature performance of porous asphalt mixture, followed by the test temperature, while the porosity and the aging condition were the least. Among the three performance evaluation indicators, namely the flexural tensile strength, maximum bending strain, and bending stiffness modulus, the maximum bending strain had the highest sensitivity to the porosity. It can be seen from the single factor influence test of porosity that there existed an approximately linear relationship between the maximum bending strain and the porosity of porous asphalt mixture, and the maximum bending strain decreased with increasing porosity. Furthermore, in order to ensure the good working performance of porous asphalt mixture in low temperature environment, the porosity should also satisfy the required limits of the maximum bending strain.


2011 ◽  
Vol 243-249 ◽  
pp. 4220-4225
Author(s):  
Rui Bo Ren ◽  
Li Tao Geng ◽  
Li Zhi Wang ◽  
Peng Wang

To study the mechanical properties of high modulus asphalt mixtures, dynamic modulus and phase angle of these two mixtures are tested with Simple Performance Testing System under different temperatures, loading frequencies and confining pressures. Testing results show the superiority of high modulus asphalt mixture in aspect of high temperature performance. Furthermore, the changing rules of dynamic modulus and phase angle are also discussed.


2013 ◽  
Vol 477-478 ◽  
pp. 1175-1178
Author(s):  
Ling Zou ◽  
Jing Wei Ne ◽  
Weng Gang Zhang

70# and 90# matrix asphalt mixture with MaR were studied through dynamic modulus test, rutting test, freeze-thaw splitting test, bending test to study the applicability of the Modifying agent of rubber plastic compound (MaR) in matrix asphalt mixture.Test results were Compared with SBSI-C modified asphalt mixture.The results indicate that: high-temperature stability of MaR+70# asphalt mixture is as well as SBSI-C modified asphalt mixture,and is bettere than MaR+90# asphalt mixture; water stability of MaR+90# asphalt mixture is bettere than SBSI-C modified asphalt mixture and MaR+70# asphalt mixture; low temperature performance of MaR+90# asphalt mixture is bettere than MaR+70# asphalt mixture, but is worse than modified asphalt mixture SBSI-C ; MaR+70# asphalt mixture can be first used in area of resisting high temperature and rutting, MaR+90# asphalt mixture can be used if the water stability performance and low temperature performance are considered.


Sign in / Sign up

Export Citation Format

Share Document