Experimental Analysis of Bond between Corroded Steel Bar and Concrete Confined with Textile-Reinforced Concrete

2019 ◽  
Vol 31 (10) ◽  
pp. 04019208
Author(s):  
Shiping Yin ◽  
Lei Jing ◽  
Henglin Lv
2011 ◽  
Vol 243-249 ◽  
pp. 1008-1012 ◽  
Author(s):  
Shi Ping Yin ◽  
Shi Lang Xu

The textile reinforced concrete (TRC) member has no distinct failure symptom when it arrives at its ultimate load. At the same time, ordinary steel-reinforced concrete (RC) elements have large dead weight and can not efficiently restrict the expansion of the main crack of structures. In order to overcome the above disadvantages, a new architecture reinforced with a combination of the textile and steel bar was presented in this study. The analytical formulae of the proper beam using this new structure were derived, including the load-carrying capacity at different stages and load vs. mid- span deflection relationship during the entire loading process. The theoretical values were compared with the experimental values. It is shown that the theoretical values coincide with the experimental values well and the feasibility of the formulae is verified.


2021 ◽  
Vol 301 ◽  
pp. 124300
Author(s):  
Dimas Alan Strauss Rambo ◽  
Caroline Umbinger de Oliveira ◽  
Renan Pícolo Salvador ◽  
Romildo Dias Toledo Filho ◽  
Otávio da Fonseca Martins Gomes ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2127
Author(s):  
Richard Fürst ◽  
Eliška Fürst ◽  
Tomáš Vlach ◽  
Jakub Řepka ◽  
Marek Pokorný ◽  
...  

Textile-reinforced concrete (TRC) is a material consisting of high-performance concrete (HPC) and tensile reinforcement comprised of carbon roving with epoxy resin matrix. However, the problem of low epoxy resin resistance at higher temperatures persists. In this work, an alternative to the epoxy resin matrix, a non-combustible cement suspension (cement milk) which has proven stability at elevated temperatures, was evaluated. In the first part of the work, microscopic research was carried out to determine the distribution of particle sizes in the cement suspension. Subsequently, five series of plate samples differing in the type of cement and the method of textile reinforcement saturation were designed and prepared. Mechanical experiments (four-point bending tests) were carried out to verify the properties of each sample type. It was found that the highest efficiency of carbon roving saturation was achieved by using finer ground cement (CEM 52.5) and the pressure saturation method. Moreover, this solution also exhibited the best results in the four-point bending test. Finally, the use of CEM 52.5 in the cement matrix appears to be a feasible variant for TRC constructions that could overcome problems with its low temperature resistance.


Sign in / Sign up

Export Citation Format

Share Document