An Investigation on Flexural Behavior of Reinforced Concrete Beam with Textile

2011 ◽  
Vol 243-249 ◽  
pp. 1008-1012 ◽  
Author(s):  
Shi Ping Yin ◽  
Shi Lang Xu

The textile reinforced concrete (TRC) member has no distinct failure symptom when it arrives at its ultimate load. At the same time, ordinary steel-reinforced concrete (RC) elements have large dead weight and can not efficiently restrict the expansion of the main crack of structures. In order to overcome the above disadvantages, a new architecture reinforced with a combination of the textile and steel bar was presented in this study. The analytical formulae of the proper beam using this new structure were derived, including the load-carrying capacity at different stages and load vs. mid- span deflection relationship during the entire loading process. The theoretical values were compared with the experimental values. It is shown that the theoretical values coincide with the experimental values well and the feasibility of the formulae is verified.

2019 ◽  
Vol 276 ◽  
pp. 01033
Author(s):  
Muhtar ◽  
Sri Murni Dewi ◽  
Wisnumurti ◽  
As’ad Munawir

Bamboo can use at the simple concrete construction because of the tensile strength of its mechanical property. Meanwhile, a slippery surface of the bamboo caused cracks in the bamboo reinforced concrete beam (BRC) not to spread and yield slip failure between a bamboo bar and concrete. Load test at the BRC beam yield humble load capacity. This study aims to improve the capacity and behavior of BRC beam bending by giving waterproof coating, sand, and hose clamp installation. The beam test specimen with the size of 75x150x1100mm made as many as 26 pieces with the variety of reinforcement. The hose clamp used on the bamboo reinforcement varies with a distance of 0 cm, 15 cm, 20 cm, and 25 cm. The testing using a simple beam with two-point loading. The test results show that BRC beams have different bending behavior compared to the steel reinforced concrete beam (SRC).


2013 ◽  
Vol 486 ◽  
pp. 211-216
Author(s):  
Jan Zatloukal ◽  
Petr Konvalinka

The flexural behavior of FRP (Fiber Reinforced Polymer) reinforced concrete beam has been the topic of intensive previous research, because of the spread of use of modern FRP composite materials in the building industry as concrete reinforcement. The behavior of FRP reinforced member is different from the one reinforced with regular steel reinforcement, mainly because of vast difference between moduli of elasticity of FRP composite reinforcement bars and steel. This difference results in the fact that conventional design methods used for years in the field of reinforced concrete structures using steel reinforcement give poor results if attempted use with FRP reinforced structural members. Results of conventional methods are so poor that use of such methods would be dangerous they tend to overestimate load carrying capacity and underestimate deformations both resulting in unsafe predictions. This paper points to formulating easy to use and comprehensible method of predicting moment capacity of FRP reinforced concrete beams subjected to bending loading and validation of the proposed method via set of experiments.


The flexural behavior of concrete beams reinforced with bamboo was studied experimentally. Bamboo was used as the main reinforcement with different bonding materials in place of steel. A nominal mix of M20 grade concrete was adopted for the beam design. The Bamboo surface was treated with common binding materials like Araldite and Bitumen. Araldite and Bitumen are good binding materials used to connect materials like steel, carbon and many different materials. Two specimens were casted with bitumen coating, two specimens were coated with araldite, two specimens were casted without any binder coating and a specimen was casted using normal steel reinforcement. Beams were casted with bamboo reinforcement and cured for 28 days. Deflection and flexural behavior of the beams were monitored. The test results imply that araldite coating in concrete beams with bamboo reinforcement increased the flexural strength to that of bamboo reinforced concrete using bitumen which is lesser strength to that of steel reinforced concrete beam.


2014 ◽  
Vol 92 ◽  
pp. 74-83 ◽  
Author(s):  
Wanchai Yodsudjai

The applications of using fly ash-based geopolymer as a structural member and a repair materials in reinforced concrete structure was conducted. The optimum mix proportion of fly ash-based geopolymer concrete using for structural beam and fly ash-based geopolymer mortar using for repair material were developed. The flexural behavior of fly ash-based geopolymer reinforced concrete and the durability aspect namely the corrosion of steel reinforcement were investigated using the electrical acceleration. For the repair purpose, the fundamental properties; that is, compressive strength, flexural strength, bonding strength between fly ash-based geopolymer mortar and mortar substrate, setting time and chloride penetration were investigated. Also, the durability of conventional reinforced concrete beam repaired by the fly ash-based geopolymer mortar comparing with the comercial repair mortar was investigated. The behavior of the fly ash-based geopolymer reinforced concrete beam was similar to that of the conventional reinforced concrete beam; however, the corrosion of the steel reinforcement of the fly ash-based geopolymer reinforced concrete beam was higher than that of the conventional reinforced concrete beam. The fundamental properties of the fly ash-based geopolymer mortar were not different from that of the commercial repair materials; however, the durability of the reinforced concrete beam repaired by the fly ash-based geopolymer mortars performed a little lower than that of repaired with the commercial repair motar and also the control reinforced concrete with no repair. As a result, even there will be still a need of improvement there was a good tendency for using the fly ash-based geopolymer as the structural member and the repair materials.


Structures ◽  
2021 ◽  
Vol 34 ◽  
pp. 589-603
Author(s):  
Khondaker Sakil Ahmed ◽  
Md Ahsan Habib ◽  
Md Farhan Asef

Author(s):  
S. O. Chepilko ◽  

Problems of taking into account nonlinear creep in steel- reinforced concrete beams are considered basing on the integral equation of viscous-elastic-plasticity of concrete. There has been obtained the resolving system of nonlinear integral equations, a linearization of this system has been carried out, its asymptotic solutions have been written out for the theory of elastic heredity case. The analysis of taking into account nonlinear creep has been performed compared with the linear creep equations and an instantaneous (short-term) loading allowing for concrete’s nonlinear diagram.


2011 ◽  
Vol 250-253 ◽  
pp. 2857-2860 ◽  
Author(s):  
Yu Zhuo Wang ◽  
Chuang Guo Fu

Prestressed steel reinforced concrete structure, compared with other concrete structure has its unique advantages. So it is mainly used in large span and conversion layers. With the popularization of this structure,more attention should be payed on fire resistance performance. On the basis of reasonable assume,two steps model is used as concrete high strength calculation model. Simplified intensity decreased curve is used as rebar,steel and prestressed. Two ultimate bearing capacity formulas of prestressed steel reinforced concrete beam are established. One is for the beam whose tensile area is under fire, the other is for the beam whose compression area is under fire. Prestressed steel reinforced concrete structure has both prestressed concrete structure’s advantages and steel reinforced concrete structure ’s advantage. Steel reinforced concrete is used to improve the bearing capacity of the structure. Prestressed steel is used to improve the ultimate state of structure’s performance during normal use. Thereby structure’s performance is better to play. There are many similarities between prestressed steel reinforced concrete structure and steel reinforced concrete structure about fire resistance performance. Because of prestressed steel reinforced concrete structure’s own characteristics, there are still many problems about fire resistance. This paper mainly presented bending terminal bearing capacity of prestressed steel reinforced concrete beam under fire. Established simplified formulae for calculation, it is meet the engineering accuracy requirement.


2020 ◽  
Vol 10 (3) ◽  
pp. 822 ◽  
Author(s):  
Shatha Alasadi ◽  
Payam Shafigh ◽  
Zainah Ibrahim

The purpose of this paper is to investigate the flexural behavior of over-reinforced concrete beam enhancement by bolted-compression steel plate (BCSP) with normal reinforced concrete beams under laboratory experimental condition. Three beams developed with steel plates were tested until they failed in compression compared with one beam without a steel plate. The thicknesses of the steel plates used were 6 mm, 10 mm, and 15 mm. The beams were simply supported and loaded monotonically with two-point loads. Load-deflection behaviors of the beams were observed, analyzed, and evaluated in terms of spall-off concrete loading, peak loading, displacement at mid-span, flexural stiffness (service and post-peak), and energy dissipation. The outcome of the experiment shows that the use of a steel plate can improve the failure modes of the beams and also increases the peak load and flexural stiffness. The steel development beams dissipated much higher energies with an increase in plate thicknesses than the conventional beam.


Sign in / Sign up

Export Citation Format

Share Document