interface bond
Recently Published Documents


TOTAL DOCUMENTS

117
(FIVE YEARS 31)

H-INDEX

15
(FIVE YEARS 3)

Structures ◽  
2022 ◽  
Vol 36 ◽  
pp. 580-588
Author(s):  
David Boyajian ◽  
Tadeh Zirakian ◽  
Christof Boyajian ◽  
Shen-En Chen

2022 ◽  
pp. 136943322110723
Author(s):  
Yasir Ibrahim Shah ◽  
Zhijian Hu ◽  
Pengfei Yao

This paper presents an experimental study of a novel composite structure used in prefabricated bridges. Corrugated pipes were used to improve the interface bond performance of the structure because of their excellent stiffening effect on the grouting material. Interface bond performance of overlap joints within corrugated pipes was explored by the load-displacement curve and load-strain curves. Ultra-High Performance Concrete (UHPC) and high-strength mortar were used as grouting materials. The diameter of steel bars, UHPC, high-strength mortar, strength grades of surrounded concrete, anchorage length, the diameter of the corrugated pipe, and lap length was taken as influential factors. Twenty specimens were designed for the pull-out test by using a larger cover thickness. The failure modes and the influence of different influential factors on the interface bond strength of each specimen were analyzed. The results show that the bond performance between UHPC and reinforcement was better than that of high-strength mortar and normal concrete, which can effectively improve the bond strength and reduce the basic anchorage length of reinforcement besides the design size of prefabricated members. In addition, the differences in anchorage length and lap length between the corrugated pipe grouting reinforcement were compared to the different specifications and prefabricated concrete members. Combined with the test phenomenon and analysis results, it is suggested that the anchorage length and lap length of connecting reinforcement should be reconsidered. Furthermore, the grouting effect under different diameters of corrugated pipe and reinforcement were compared. It is recommended that the corrugated pipe diameter should be four times that of the overlapping grouting reinforcement.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7753
Author(s):  
Enzo Martinelli ◽  
Antonio Caggiano

This paper aims at further advancing the knowledge about the cyclic behavior of FRP strips glued to quasi-brittle materials, such as concrete. The results presented herein derive from a numerical model based on concepts of based on fracture mechanics and already presented and validated by the authors in previous works. Particularly, it assumes that fracture processes leading to debonding develop in pure mode II, as is widely accepted in the literature. Starting from this assumption (and having clear both its advantages acnd shortcomings), the results of a parametric analysis are presented with the aim of investigating the role of both the mechanical properties of the interface bond–slip law and a relevant geometric quantity such as the bond length. The obtained results show the influence of the interface bond–slip law and FRP bond length on the resulting cyclic response of the FRP-to-concrete joint, the latter characterized in terms of S-N curves generally adopted in the theory of fatigue. Far from deriving a fully defined correlation among those parameters, the results indicate general trends that can be helpful to drive further investigation, both experimental and numerical in nature.


2021 ◽  
Vol 11 (23) ◽  
pp. 11161
Author(s):  
Xinrong He ◽  
Guowei Li ◽  
Sidi Kabba Bakarr ◽  
Jiantao Wu ◽  
Wei Yu

Soft rock slopes were anchored with traditional steel bars and new Glass Fibre Reinforced Polymer (GFRP) bars. The difference in the anchorage performance of the two kinds of anchorage elements in soft rock and expansive soil was studied by an in-situ test. The results show that cyclic load can aggravate the bond damage of the interface between grouting body and both kinds of bars used in soft rock. Compared with the number of cyclic loads applied, the previous maximum load is the main factor that influences the bond damage of the anchorage bar. Under constant loading, the interface bond behaviour of GFRP bar is better than the steel bar. Because of the small difference in elastic modulus between the GFRP bar and the grouting body, the interface bond around the GFRP bar can invoke more resistance of the grouting body efficiently which demonstrates its more effective anchorage performance than the steel bar under the same conditions. The anchorage structure of steel bar in soft rock can generate larger interfacial relative displacement with increasing load than the GFRP bar in the anchorage section, even though the elastic modulus of steel is much larger than GFRP. In the expansive soil, the anchorage structure deformations of steel and GFRP bars are almost the same because of the weaker bond at the interface of the grouting body and the surrounding soil than that of the bar interface. Under the ultimate loading of the anchorage structure in soft rock, the steel bar with 450 MPa which is less than its ultimate strength shows the failure of the bar body pulling-out, and the GFRP bar with 508 MPa which is larger than its ultimate strength shows the failure of the bar body by fracture. The steel bar anchorage structure in soft rock is destroyed at the interface around the grouting body. The results show that the GFRP bar performs more efficiently than the steel bar.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7053
Author(s):  
Huijuan Dai ◽  
Bo Wang ◽  
Jiawei Zhang ◽  
Junlei Zhang ◽  
Kimitaka Uji

This paper presents the results of pull-out tests conducted to investigate the interfacial bond behavior between a carbon-fiber-reinforced polymer (CFRP) grid–polymer cement mortar (PCM) reinforcing layer and existing concrete, and proposes a simplified mechanical model to further study the interface bond mechanism. Four specimens composed of a CFRP grid, PCM, and concrete were tested. The influence of the type of CFRP grid and the grid interval on the interface bond behavior was discussed. The failure patterns, maximum tensile loads, and CFRP grid strains were obtained. The change process of interface bond stress was investigated based on the grid strain analysis. In addition, the simplified mechanical model and finite element model (FEM) were emphatically established, and the adaptability of the simplified mechanical model was validated through the comparative analysis between the FEM results and the test results. The research results indicate that a CFRP grid with a larger cross-sectional area and smaller grid interval could effectively improve the interface bond behavior. The tensile stress was gradually transferred from the loaded edge to the free edge in the CFRP grid. The interface bond behavior was mainly dependent on the anchorage action of the CFRP grid in the PCM, and the bond action between the PCM and the concrete. The FEM results were consistent with the test results, and the simplified mechanical model with nonlinear springs could well describe the interface bond mechanism between the CFRP grid–PCM reinforcing layer and concrete.


2021 ◽  
Vol 21 (8) ◽  
pp. 4423-4428
Author(s):  
Eun Seong Yu ◽  
Seok Jun Kang ◽  
Jong Mo Lee ◽  
Byung Seong Bae

The interface reaction between a metal layer and a layer of amorphous indium-gallium-zinc oxide was investigated. Oxygen atoms at the interface bond to the metal atoms and form metal oxide. The reaction depends on the annealing temperature and ambient conditions. The thickness of the metal oxide at the interface increased with the annealing temperatures. The reaction relies on the Gibbs free energy for oxidation. Ta, which has low Gibbs free energy formed a 33 nm layer of tantalum oxide at an annealing temperature of 450 °C. The HR-TEM and EDX observation showed that the metal oxide thicknesses were 5, 10, and 33 nm at annealing temperatures of 350, 400, and 450 °C, respectively. The thicknesses obtained with both Ar and oxygen gas were 4, 8, and 21 nm, respectively. The lower oxide thicknesses were attributed to the lower number of oxygen vacancies in the IGZO deposited using Ar and oxygen, which was identified by XPS analysis.


Author(s):  
Davide Ragni ◽  
Nithin Sudarsanan ◽  
Francesco Canestrari ◽  
Y. Richard Kim

2021 ◽  
Vol 257 ◽  
pp. 112942 ◽  
Author(s):  
Francesco Ascione ◽  
Annalisa Napoli ◽  
Roberto Realfonzo

Sign in / Sign up

Export Citation Format

Share Document