Seismic Laboratory Testing of Energy-Efficient, Staggered-Stud, Wood-Frame Shear Walls

2015 ◽  
Vol 141 (3) ◽  
Author(s):  
Tonatiuh Rodriguez-Nikl ◽  
Rakesh Gupta ◽  
Anthonie Kramer ◽  
Arijit Sinha
2021 ◽  
Vol 240 ◽  
pp. 112298
Author(s):  
Paúl Orellana ◽  
Hernán Santa María ◽  
José Luis Almazán ◽  
Xavier Estrella

2011 ◽  
Vol 255-260 ◽  
pp. 350-354
Author(s):  
Liu Yan ◽  
Xiao Jin Zou ◽  
Chen Gang She

The performance of two types of Chinese screw nails in connections between sheathing and wood frame was assessed using ASTM-F1575-03. Specimens were tested in groups of 10, and both parallel-to-grain and perpendicular-to-grain specimens were tested in the case of ASTM-F1676-03. It was found that the type of nail had little effect on the performance of nail joints. Finally a modified model suitable to domestic nails in two directions was established on the basis of Foschi’s exponential model. The model provides useful data on the performance of sheathing-to-lumber connections.


Author(s):  
Priyanshu Agarwal ◽  
Ashish D. Deshpande

The past few decades have witnessed a rapid explosion in research surrounding robotic exoskeletons due to their promising applications in medicine and human performance augmentation. Several advances in technology have led to the development of more energy efficient and viable prototypes of these devices. However, despite this rapid advancement in exoskeleton technology, most of the developed devices are limited to laboratory testing and a very few of them are commercially available for human use. This chapter discusses the advances in various constituting technologies including actuation, sensing, materials, and controls that made exoskeleton research feasible. Also presented are case studies on two state-of-the-art robotic exoskeletons, Harmony and Maestro, developed for rehabilitation of the upper body. The chapter concludes with a discussion on the ongoing challenges in exoskeleton design and ethical, social, and legal considerations related to the use of these devices and the future of exoskeletons.


2019 ◽  
Vol 9 (6) ◽  
pp. 1222 ◽  
Author(s):  
Klaus Viljanen ◽  
Xiaoshu Lu

The recent research on highly insulated structures presents controversial conclusions on risks in moisture safety. This paper addresses these controversial issues through investigating the hygrothermal performance of energy efficient envelope structures under high moisture loads. The experiments consist of built-in moisture and rain leakage tests in mineral wool insulated structures. A heat and moisture transfer simulation model is developed to examine the drying-out ability in both warm and cold seasons. The results show that the energy efficient structures have an excellent drying out ability against built-in and leakage moisture. The difference in the drying ability is limited compared to conventional structures. A critical leakage moisture amount reaching the insulation cavity for a wood frame wall is determined to be between 6.9–20.7 g in a single rain event occurring every other day. Further research is required to target highly insulated structures, particularly addressing water vapor diffusion and convection.


Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3373 ◽  
Author(s):  
Emishaw Iffa ◽  
Fitsum Tariku ◽  
Wendy Ying Simpson

The application of exterior insulation in both new construction and retrofits is a common practice to enhance the energy efficiency of buildings. In addition to increased thermal performance, the rigid insulation can serve to keep the sheathing board warm and serve as a water-resistive barrier to keep moisture-related problems due to condensation and wind-driven rain. Polyisocyanurate (PIR) rigid boards have a higher thermal resistance in comparison to other commonly used exterior insulation boards. However, because of its perceived lower permeance, its use as exterior insulation is not very common. In this study, the hygrothermal property of PIR boards with different facer types and thicknesses is characterized. The material data obtained through experimental test and extrapolation is used in a long term hygrothermal performance assessment of a wood frame wall with PIR boards as exterior insulation. Results show that PIR with no facer has the smallest accumulated moisture on the sheathing board in comparison to other insulation boards. Walls with a bigger thickness of exterior insulation perform better when no vapor barrier is used. The PIR exterior insulation supports the moisture control strategy well in colder climates in perfect wall scenarios, where there is no air leakage and moisture intrusion. In cases where there is trapped moisture, the sheathing board has a higher moisture content with PIR boards with both aluminum or fiberglass type facers. An innovative facer material development for PIR boards can help efforts targeting improved energy-efficient and durable wall systems.


2012 ◽  
Vol 138 (12) ◽  
pp. 1419-1426 ◽  
Author(s):  
Minghao Li ◽  
Frank Lam ◽  
Borjen Yeh ◽  
Tom Skaggs ◽  
Doug Rammer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document