Full-Scale Measurements of Wind Pressures on a Low-Rise Building during Typhoons and Comparison with Wind Tunnel Test Results and Aerodynamic Database

2020 ◽  
Vol 146 (10) ◽  
pp. 04020196
Author(s):  
X. J. Wang ◽  
Q. S. Li ◽  
B. W. Yan
2013 ◽  
Vol 6 (2) ◽  
pp. 486-497 ◽  
Author(s):  
Joshua P. Kehs ◽  
Kenneth D. Visser ◽  
Jeff Grossman ◽  
Jared Niemiec ◽  
Andrew Smith ◽  
...  

2016 ◽  
Vol 7 (2) ◽  
pp. 131-138
Author(s):  
Ivransa Zuhdi Pane

Data post-processing plays important roles in a wind tunnel test, especially in supporting the validation of the test results and further data analysis related to the design activities of the test objects. One effective solution to carry out the data post-processing in an automated productive manner, and thus eliminate the cumbersome conventional manual way, is building a software which is able to execute calculations and have abilities in presenting and analyzing the data in accordance with the post-processing requirement. Through several prototype development cycles, this work attempts to engineer and realize such software to enhance the overall wind tunnel test activities. Index Terms—software engineering, wind tunnel test, data post-processing, prototype, pseudocode


2021 ◽  
Vol 11 (8) ◽  
pp. 3315
Author(s):  
Fabio Rizzo

Experimental wind tunnel test results are affected by acquisition times because extreme pressure peak statistics depend on the length of acquisition records. This is also true for dynamic tests on aeroelastic models where the structural response of the scale model is affected by aerodynamic damping and by random vortex shedding. This paper investigates the acquisition time dependence of linear transformation through singular value decomposition (SVD) and its correlation with floor accelerometric signals acquired during wind tunnel aeroelastic testing of a scale model high-rise building. Particular attention was given to the variability of eigenvectors, singular values and the correlation coefficient for two wind angles and thirteen different wind velocities. The cumulative distribution function of empirical magnitudes was fitted with numerical cumulative density function (CDF). Kolmogorov–Smirnov test results are also discussed.


2019 ◽  
Vol 52 (12) ◽  
pp. 128-133
Author(s):  
Yoshiro Hamada ◽  
Kenichi Saitoh ◽  
Noboru Kobiki

2016 ◽  
Vol 66 (4) ◽  
pp. 34-39 ◽  
Author(s):  
Dijana Damljanovic ◽  
Djordje Vukovic ◽  
Aleksandar Vitic ◽  
Jovan Isakovic ◽  
Goran Ocokoljic

1999 ◽  
Author(s):  
Lewis B. Scherer ◽  
Christopher A. Martin ◽  
Mark N. West ◽  
Jennifer P. Florance ◽  
Carol D. Wieseman ◽  
...  

Author(s):  
Brian P. Anderson ◽  
James Greathouse ◽  
Jessica Powell ◽  
James C. Ross ◽  
Barry Porter ◽  
...  
Keyword(s):  

1997 ◽  
Author(s):  
Lewis B. Scherer ◽  
Christopher A. Martin ◽  
Kari Appa ◽  
Jayanth N. Kudva ◽  
Mark N. West

2016 ◽  
Vol 20 (6) ◽  
pp. 843-864 ◽  
Author(s):  
XX Cheng ◽  
L Zhao ◽  
YJ Ge ◽  
R Dong ◽  
C Demartino

Adding vertical ribs is recognized as a useful practice for reducing wind effects on cooling towers. However, ribs are rarely used on cooling towers in China since Chinese Codes are insufficient to support the design of rough-walled cooling towers, and an “understanding” hampers the use of ribs, which thinks that increased surface roughness has limited effects on the maximum internal forces that control the structural design. To this end, wind tunnel model tests in both uniform flow field with negligible free-stream turbulence and atmospheric boundary layer (ABL) turbulent flow field are carried out in this article to meticulously study and quantify the surface roughness effects on both static and dynamic wind loads for the purpose of improving Chinese Codes first. Subsequently, a further step is taken to obtain wind effects on a full-scale large cooling tower at a high Re, which are employed to validate the results obtained in the wind tunnel. Finally, the veracity of the model test results is discussed by investigating the Reynolds number (Re) effects on them. It has been proved that the model test results for atmospheric boundary layer flow field are all obtained in the range of Re-independence and the conclusions drawn from model tests and full-scale measurements basically agree, so most model test results presented in this article can be directly applied to the full-scale condition without corrections.


Sign in / Sign up

Export Citation Format

Share Document