Use of Natural Fiber and Recyclable Materials for Spacers in Typical Space Truss Connections

2021 ◽  
Vol 147 (8) ◽  
pp. 04021112
Author(s):  
Welington V. Silva ◽  
Luciano M. Bezerra ◽  
Cleirton S. Freitas ◽  
Jorge Bonilla ◽  
Ramon Silva
Keyword(s):  
2012 ◽  
Vol 2 (11) ◽  
pp. 165-167
Author(s):  
B.O .Ugwuishiwu B.O .Ugwuishiwu ◽  
◽  
B.O. Mama B.O. Mama ◽  
N. M Okoye N. M Okoye

2020 ◽  
Vol 13 (3) ◽  
Author(s):  
Mani Kandan A ◽  
Rajakumar S
Keyword(s):  

2020 ◽  
Author(s):  
Govind Shukla ◽  
Monica Yadav ◽  
Sabitha M ◽  
Sampath Kumar
Keyword(s):  

2019 ◽  
Vol 12 (1) ◽  
pp. 4-76 ◽  
Author(s):  
Krittirash Yorseng ◽  
Mavinkere R. Sanjay ◽  
Jiratti Tengsuthiwat ◽  
Harikrishnan Pulikkalparambil ◽  
Jyotishkumar Parameswaranpillai ◽  
...  

Background: This era has seen outstanding achievements in materials science through the advances in natural fiber-based composites. The new environmentally friendly and sustainability concerns have imposed the chemists, biologists, researchers, engineers, and scientists to discover the engineering and structural applications of natural fiber reinforced composites. Objective: To present a comprehensive evaluation of information from 2000 to 2018 in United States patents in the field of natural fibers and their composite materials. Methods: The patent data have been taken from the external links of US patents such as IFI CLAIMS Patent Services, USPTO, USPTO Assignment, Espacenet, Global Dossier, and Discuss. Results: The present world scenario demands the usage of natural fibers from agricultural and forest byproducts as a reinforcement material for fiber reinforced composites. Natural fibers can be easily extracted from plants and animals. Recently natural fiber in nanoscale is preferred over micro and macro scale fibers due to its superior thermo-mechanical properties. However, the choice of macro, micro, and nanofibers depends on their applications. Conclusion: This document presents a comprehensive evaluation of information from 2000 to 2018 in United States patents in the field of natural fibers and their composite materials.


2020 ◽  
Vol 13 ◽  
Author(s):  
V. Arumugaprabu ◽  
K.Arun Prasath ◽  
S. Mangaleswaran ◽  
M. Manikanda Raja ◽  
R. Jegan

: The objective of this research is to evaluate the tensile, impact and flexural properties of flax fiber and basalt powder filled polyester composite. Flax fiber is one of the predominant reinforcement natural fiber which possess good mechanical properties and addition of basalt powder as a filler provides additional support to the composite. The Composites are prepared using flax fiber arranged in 10 layers with varying weight percentage of the basalt powder as 5 wt.%, 10 wt.%, 15 wt.%, 20 wt.%, 25 wt.% and 30 wt.% respectively. From the results it is inferred that the composite combination 10 Layers of flax / 5 wt.%, basalt Powder absorbs more tensile load of 145 MPa. Also, for the same combination maximum flexural strength is about 60 MPa. Interestingly in the case of impact strength more energy was absorbed by 10 layers of flax and 30 wt.% of basalt powder. In addition, the failure mechanism of the composites also discussed briefly using SEM studies.


Sign in / Sign up

Export Citation Format

Share Document