Evaluation of Masonry Beams with Openings and Validation Using a Strut-and-Tie Model

2021 ◽  
Vol 147 (12) ◽  
pp. 04021195
Author(s):  
Joshua D. Ring ◽  
Jennifer E. Tanner
2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Panji Ginaya Taufik

Pile cap is a structure to distribute load from the upper structure to the sub structure. Often the planning of the pile cap is approached as a two way slab or beam with pile as restrain, by consider the bending and shear separately. As is the case with conventional methods that consider 1-way shear, 2-way shear, and bending separately. The strut and tie model can be used as an alternative method in designing a pile cap, by approaching the stress trajectory with the truss model. In this study, a pile cap will be designed using the conventional method and the strut and tie model, the pile cap with 3 pile cap and an eccentric load. Then the results are tested numerically using Abaqus to determine the difference in behavior. The main reinforcement results from the strut and tie model method are more evenly stressed than the conventional method, also the vertical load needed to achieve the main reinforcement yield stress strut and tie model (1100 kN) is greater than the conventional method (900 kN).


2004 ◽  
Vol 31 (1) ◽  
pp. 109-119 ◽  
Author(s):  
William Cavers ◽  
Gordon A Fenton

There are a number of design methods that have been described for the design of pile caps, but there has been no consensus on which method provides the best approach for the working designer. This paper describes a study conducted to establish the performance of several pile cap design methods, particularly with respect to the Canadian standard, CSA A23.3-94. Previous research was examined to determine the basis of the design methods and the state of current research. The design methods identified were then applied to pile caps for which test data were available. The theoretical loads obtained using the various design methods were compared with the experimental loads. The results of this study indicate that two design models of the five examined are the most suitable. This study also indicates that the provisions of the Canadian design standard are adequate. A possible refinement of the strut-and-tie model incorporating a geometric limit is also outlined.Key words: building codes, footings, pile caps, reinforced concrete, structural design.


Sign in / Sign up

Export Citation Format

Share Document