Cellular Automata Modeling Framework for Urban Water Reuse Planning and Management

2016 ◽  
Vol 142 (12) ◽  
pp. 04016054 ◽  
Author(s):  
Venu K. Kandiah ◽  
Emily Z. Berglund ◽  
Andrew R. Binder
2016 ◽  
Vol 16 (6) ◽  
pp. 1519-1527 ◽  
Author(s):  
Evangelos Rozos ◽  
David Butler ◽  
Christos Makropoulos

Modern distributed water-aware technologies (including, for example, greywater recycling and rainwater harvesting) enable water reuse at the scale of household or neighbourhood. Nevertheless, even though these technologies are, in some cases, economically advantageous, they have a significant handicap compared to the centralized urban water management options: it is not easy to estimate a priori the extent and the rate of the technology spread. This disadvantage is amplified in the case of additional uncertainty due to expansion of an urban area. This overall incertitude is one of the basic reasons the stakeholders involved in urban water are sceptical about the distributed technologies, even in the cases where these appear to have lower cost. In this study, we suggest a methodology that attempts to cope with this uncertainty by coupling a cellular automata (CA) and a system dynamics (SD) model. The CA model is used to create scenarios of urban expansion including the suitability of installing water-aware technologies for each new urban area. Then, the SD model is used to estimate the adoption rate of the technologies. Various scenarios based on different economic conditions and water prices are assessed. The suggested methodology is applied to an urban area in Attica, Greece.


2020 ◽  
Vol 1 ◽  
pp. 1-23
Author(s):  
Majid Hojati ◽  
Colin Robertson

Abstract. With new forms of digital spatial data driving new applications for monitoring and understanding environmental change, there are growing demands on traditional GIS tools for spatial data storage, management and processing. Discrete Global Grid System (DGGS) are methods to tessellate globe into multiresolution grids, which represent a global spatial fabric capable of storing heterogeneous spatial data, and improved performance in data access, retrieval, and analysis. While DGGS-based GIS may hold potential for next-generation big data GIS platforms, few of studies have tried to implement them as a framework for operational spatial analysis. Cellular Automata (CA) is a classic dynamic modeling framework which has been used with traditional raster data model for various environmental modeling such as wildfire modeling, urban expansion modeling and so on. The main objectives of this paper are to (i) investigate the possibility of using DGGS for running dynamic spatial analysis, (ii) evaluate CA as a generic data model for dynamic phenomena modeling within a DGGS data model and (iii) evaluate an in-database approach for CA modelling. To do so, a case study into wildfire spread modelling is developed. Results demonstrate that using a DGGS data model not only provides the ability to integrate different data sources, but also provides a framework to do spatial analysis without using geometry-based analysis. This results in a simplified architecture and common spatial fabric to support development of a wide array of spatial algorithms. While considerable work remains to be done, CA modelling within a DGGS-based GIS is a robust and flexible modelling framework for big-data GIS analysis in an environmental monitoring context.


2013 ◽  
pp. 129-146
Author(s):  
Cara Beal ◽  
Rodney Stewart ◽  
Damien Giurco ◽  
Kriengsak Panuwatwanich

2005 ◽  
Vol 51 (10) ◽  
pp. 317-325 ◽  
Author(s):  
A.G. Fane ◽  
S.A. Fane

Decentralized wastewater treatment has the potential to provide sanitation that meets criteria for sustainable urban water management in a manner that is less resource intensive and more cost effective than centralized approaches. It can facilitate water reuse and nutrient recovery and can potentially reduce the ecological risks of wastewater system failure and the community health risk in a wastewater reuse scheme. This paper examines the potential role of membrane technology in sustainable decentralized sanitation. It is argued that the combination of membrane technology within decentralized systems can satisfy many of the criteria for sustainable urban water management. In particular, the role of membranes as a dependable barrier in the wastewater treatment process can increase system reliability as well as lowering the latent risks due to wastewater reuse. The modular nature of membranes will allow plant size to range from single dwellings, through clusters to suburb size. It is concluded that realization of the potential for membrane-based technologies in decentralized wastewater treatment will require some progress both technically and institutionally. The areas where advances are necessary are outlined.


Sign in / Sign up

Export Citation Format

Share Document