A New Numerical Model for Stokes Flow and Permeability Estimation

Author(s):  
Xin-She Yang ◽  
B. Zhou
1999 ◽  
Vol 121 (1) ◽  
pp. 155-162 ◽  
Author(s):  
James Giuliani ◽  
Kambiz Vafai

In the present study, particle growth on individual fibers within a fibrous medium is examined as flow conditions transition beyond the Stokes flow regime. Employing a numerical model that solves the viscous, incompressible Navier-Stokes equations, the Stokes flow approximation used in past research to describe the velocity field through the fibrous medium is eliminated. Fibers are modeled in a staggered array to eliminate assumptions regarding the effects of neighboring fibers. Results from the numerical model are compared to the limiting theoretical results obtained for individual cylinders and arrays of cylinders. Particle growth is presented as a function of time, angular position around the fiber, and flow Reynolds number. From the range of conditions examined, particles agglomerate into taller and narrower dendrites as Reynolds number is increased, which increases the probability that they will break off as larger agglomerations and, subsequently, substantially reduce the hydraulic conductivity of the porous medium.


2010 ◽  
Vol 13 (3) ◽  
pp. 78-87
Author(s):  
Hoai Cong Huynh

The numerical model is developed consisting of a 1D flow model and the morphological model to simulate the erosion due to the water overtopping. The step method is applied to solve the water surface on the slope and the finite difference method of the modified Lax Scheme is applied for bed change equation. The Meyer-Peter and Muller formulae is used to determine the bed load transport rate. The model is calibrated and verified based on the data in experiment. It is found that the computed results and experiment data are good agreement.


2015 ◽  
Vol 35 ◽  
pp. 268-271
Author(s):  
Michele Saroli ◽  
Michele Lancia ◽  
Marco Petitta ◽  
Gabriele Scarascia Mugnozza

2011 ◽  
Vol 2 (1) ◽  
pp. 1-12
Author(s):  
A. Hegyi ◽  
H. Vermeşan ◽  
V. Rus

Abstract In this paper we wish to present the numerical model elaborated in order to simulate some physical phenomena that influence the general deterioration of steel, whether hot dip galvanized or not, in reinforced concrete. We describe the physical and mathematical models, establishing the corresponding equation system, the initial and boundary conditions. We have also presented the numeric model associated to the mathematical model and the numeric methods of discretization and solution of the differential equations system that describes the mathematical model.


Sign in / Sign up

Export Citation Format

Share Document