Mechanical Response of Asphalt-Pavements under Static and Moving Wheel-Load

Author(s):  
Carlo Rabaiotti ◽  
Markus Caprez
Author(s):  
S. Anjan kumar ◽  
P. Alagappan ◽  
J. Murali Krishnan ◽  
A. Veeraragavan

2011 ◽  
Vol 243-249 ◽  
pp. 4092-4096 ◽  
Author(s):  
Yi Wei Weng ◽  
Jyh Dong Lin ◽  
Wei Hsing Huang ◽  
Ming Chin Yeh

This study utilized mechanical calculation method and finite element method ABAQUS software to analyze the mechanical response of different flexible pavement material combinations on steel deck. Heavy vehicle load with high axle load and high tire pressure were considered, so as to know the reasons for steel deck pavement distress, and to define the arrangement principle for steel deck pavement and the combination of materials suitable for flexible pavement. The results show that the fatigue damage of steel deck pavement coincides with traditional theory, the maximum tensile strain at the bottom of surface course is still the determination index, and the fatigue crack is presented mainly in four types; the maximum compressive strain on the top of steel plate is the determination index of rutting damage, the major cause for rut is the surface course under compressive strain in the wheel load position. The suitable material for steel deck one-course pavement is full depth Guss asphalt mix; the suitable combination for steel deck two-course pavement is modified asphalt mix on top and Guss asphalt mix at bottom.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Yingjun Jiang ◽  
Yu Zhang ◽  
Changqing Deng ◽  
Yong Yi ◽  
Tian Tian ◽  
...  

To improve the high-temperature rutting resistance of asphalt pavements, an inverted asphalt pavement structure (IAPS), 4 cm AC-13 mixture + 8 cm AC-25 mixture + 6 cm AC-20 mixture + 54 cm cement-stabilized macadam, was proposed herein by considering engineering practice, theoretical calculation, and analysis. A rutting prediction equation of asphalt pavements was then proposed via rut-development trends found by laboratory 18 cm thick rutting test. Subsequently, the rutting resistance of the IAPS was evaluated. The results show that, compared with the traditional asphalt pavement structure (TAPS), 4 cm AC-13 mixture + 6 cm AC-20 mixture + 8 cm AC-25 mixture + 54 cm cement-stabilized macadam, the maximum shear stress of the IAPS can be reduced by ∼1.7% along with improvements in rutting resistance by ∼16% and ∼12% under wheel loads of 0.7 and 1.2 MPa, respectively. Wheel-load increase affects the rutting resistance of both structures in a similar manner: when the wheel load increases from 0.7 MPa to 1.2 MPa, the rut depths of both pavement structures increase by at least 63%. The IAPS clearly has better rutting resistance than the TAPS and is thus the better choice for asphalt pavement structure design.


2021 ◽  
Vol 248 ◽  
pp. 01038
Author(s):  
Li Zhu ◽  
Jin Li ◽  
Miaozhang Yu ◽  
Di Dong ◽  
Xinzhuang Cui

In order to study the evolution law of mechanical properties of asphalt pavement mixture in cold regions under long-term load, the rotary accelerated loading equipment was used to carry out a total of 500,000 accelerated loading tests on the full-scale pavement, and the dynamic modulus test of the mixture before and after wheel load was carried out respectively. The master curve of dynamic modulus and dynamic modulus ratio (dynamic modulus value after wheel load / dynamic modulus value before wheel load) of the mixture at -20ºC were established to predict the long-term mechanical response of the mixture at low temperature. The results show that: low-frequency (or high temperature) has a more significant effect on the viscoelastic properties of the asphalt mixture. In the conversion frequency range of 1.6×10–3~1.6×102 Hz, the dynamic modulus ratio decreases with the increase of frequency, and the maximum ratio is 0.62 when the frequency is 1.6×10–3 Hz, which indicates that the high frequency (low temperature) has little effect on the performance of asphalt mixture. This study can be used as a theoretical reference for the structural design and performance optimization of asphalt pavement in cold regions.


Author(s):  
D. L. Rohr ◽  
S. S. Hecker

As part of a comprehensive study of microstructural and mechanical response of metals to uniaxial and biaxial deformations, the development of substructure in 1100 A1 has been studied over a range of plastic strain for two stress states.Specimens of 1100 aluminum annealed at 350 C were tested in uniaxial (UT) and balanced biaxial tension (BBT) at room temperature to different strain levels. The biaxial specimens were produced by the in-plane punch stretching technique. Areas of known strain levels were prepared for TEM by lapping followed by jet electropolishing. All specimens were examined in a JEOL 200B run at 150 and 200 kV within 24 to 36 hours after testing.The development of the substructure with deformation is shown in Fig. 1 for both stress states. Initial deformation produces dislocation tangles, which form cell walls by 10% uniaxial deformation, and start to recover to form subgrains by 25%. The results of several hundred measurements of cell/subgrain sizes by a linear intercept technique are presented in Table I.


Author(s):  
D. L. Callahan

Modern polishing, precision machining and microindentation techniques allow the processing and mechanical characterization of ceramics at nanometric scales and within entirely plastic deformation regimes. The mechanical response of most ceramics to such highly constrained contact is not predictable from macroscopic properties and the microstructural deformation patterns have proven difficult to characterize by the application of any individual technique. In this study, TEM techniques of contrast analysis and CBED are combined with stereographic analysis to construct a three-dimensional microstructure deformation map of the surface of a perfectly plastic microindentation on macroscopically brittle aluminum nitride.The bright field image in Figure 1 shows a lg Vickers microindentation contained within a single AlN grain far from any boundaries. High densities of dislocations are evident, particularly near facet edges but are not individually resolvable. The prominent bend contours also indicate the severity of plastic deformation. Figure 2 is a selected area diffraction pattern covering the entire indentation area.


Sign in / Sign up

Export Citation Format

Share Document