Managing Water Levels and Flows for Improved Economical, Environmental, and Ecological Benefits in Lake Ontario and in the St. Lawrence River

Author(s):  
Daniel P. Loucks
2013 ◽  
Vol 28 (13) ◽  
pp. 4011-4022 ◽  
Author(s):  
Ali A. Assani ◽  
Raphaëlle Landry ◽  
Stacey Biron ◽  
Jean-Jacques Frenette

1989 ◽  
Vol 24 (4) ◽  
pp. 589-608 ◽  
Author(s):  
I.K. Tsanis ◽  
J. Biberhofer ◽  
C.R. Murthy ◽  
A. Sylvestre

Abstract Determination of the mass output through the St. Lawrence River outflow system is an important component in computing mass balance of chemical loadings to Lake Ontario. The total flow rate in the St. Lawrence River System at the Wolfe Island area was calculated from detailed time series current meter measurements from a network of current meters and Lagrangian drifter experiments. This flow is roughly distributed in the ratio of 55% to 45% in the South and North channel, respectively. Loading estimates of selected chemicals have been made by combining the above transport calculations with the ongoing chemical monitoring data at the St. Lawrence outflow. A vertical gradient in the concentration of some organic and inorganic chemicals was observed. The measured concentration for some of the chemicals was higher during the summer months and also is higher in the South Channel than in the North Channel of the St. Lawrence River. These loading estimates are useful not only for modelling the mass balance of chemicals in Lake Ontario but also for serving as input loadings to the St. Lawrence River system from Lake Ontario.


1996 ◽  
Vol 31 (2) ◽  
pp. 411-432 ◽  
Author(s):  
Michael E. Comba ◽  
Janice L. Metcalfe-Smith ◽  
Klaus L.E. Kaiser

Abstract Zebra mussels were collected from 24 sites in Lake Erie, Lake Ontario and the St. Lawrence River between 1990 and 1992. Composite samples of whole mussels (15 sites) or soft tissues (9 sites) were analyzed for residues of organochlo-rine pesticides and PCBs to evaluate zebra mussels as biomonitors for organic contaminants. Mussels from most sites contained measurable quantities of most of the analytes. Mean concentrations were (in ng/g, whole mussel dry weight basis) 154 ΣPCB, 8.4 ΣDDT, 3.5 Σchlordane, 3.4 Σaldrin, 1.4 ΣBHC, 1.0 Σendosulfan, 0.80 mirex and 0.40 Σchlorobenzene. Concentrations varied greatly between sites, i.e., from 22 to 497 ng/g for ΣPCB and from 0.08 to 11.6 ng/g for ΣBHC, an indication that mussels are sensitive to different levels of contamination. Levels of ΣPCB and Σendosulfan were highest in mussels from the St. Lawrence River, whereas mirex was highest in those from Lake Ontario. Overall, mussels from Lake Erie were the least contaminated. These observations agree well with the spatial contaminant trends shown by other biomoni-toring programs. PCB congener class profiles in zebra mussels are also typical for nearby industrial sources, e.g., mussels below an aluminum casting plant contained 55% di-, tri- and tetrachlorobiphenyls versus 31% in those upstream. We propose the use of zebra mussels as biomonitors of organic contamination in the Great Lakes.


2004 ◽  
Vol 133 (4) ◽  
pp. 868-879 ◽  
Author(s):  
C. Chu ◽  
C. K. Minns ◽  
J. E. Moore ◽  
E. S. Millard
Keyword(s):  

1991 ◽  
Vol 53 (1) ◽  
pp. 1-19 ◽  
Author(s):  
Ken R. Lum ◽  
K. L. E. Kaiser ◽  
C. Jaskot

2000 ◽  
Vol 34 (15) ◽  
pp. 3069-3078 ◽  
Author(s):  
Laurier Poissant ◽  
Marc Amyot ◽  
Martin Pilote ◽  
David Lean

2018 ◽  
Vol 55 (7) ◽  
pp. 677-708 ◽  
Author(s):  
David R. Sharpe ◽  
André J.-M. Pugin ◽  
Hazen A.J. Russell

The Laurentian trough (LT), a depression >100 km long, >3000 km2 in area, and 100 m deep at the base of the Niagara Escarpment, extends from within Georgian Bay to Lake Ontario. It has a complex erosional history and is filled and buried by up to 200 m of interglacial and glacial sediment. The primary depression fronts a cuesta landscape and is attributed to differential erosion by fluvial, glacial, and glaciofluvial processes, exposing Ordovician rocks along the Canadian Shield margin. The fill succession includes sediments from the last two glacial periods (Illinoian, Wisconsinan) and the intervening interglacial time (Sangamonian), a poorly dated succession with at least three regional unconformities. A subaerial (interglacial, Don Formation) unconformity relates to low base level mainly preserved in lows of the LT, succeeded by a long period of rising water levels and glaciolacustrine conditions as ice advanced into the Lake Ontario basin. A second unconformity, within the Thorncliffe Formation, is the result of rapid channel erosion to bedrock, forming an ∼north–south network filled with coarse-grained glaciofluvial, transitional to fine-grained glaciolacustrine subaqueous fan sediment. The overlying drumlinized Newmarket Till, up to 50 m thick, is a distinct regional unit with a planar to undulating base. A third unconformity event eroded Newmarket Till, locally truncating it and underlying sediment to bedrock. Three younger sediment packages, Oak Ridges Moraine (channel and ridge sediment), Halton, and glaciolacustrine overlie this erosion surface. Significant regional aquifers are hosted within the LT. Upper Thorncliffe Formation sediments, north–south glaciofluvial channel–fan aquifers, are protected by overlying mud and Newmarket Till aquitards. Similarly, Oak Ridges Moraine sediments comprise a north–south array of glaciofluvial channel–fans and east–west fan aquifers, locally covered by silt–clay rhythmite and till aquitards.


Sign in / Sign up

Export Citation Format

Share Document