Seismic Collapse Performance of Concentrically Steel Braced Frames

Author(s):  
Chui-Hsin Chen ◽  
Stephen Mahin
2017 ◽  
pp. 273-292 ◽  
Author(s):  
Y. B. Yang ◽  
◽  
Gang Li ◽  
Zhi-Qian Dong ◽  
Hong-Nan Li ◽  
...  

Author(s):  
Saeed Gholizadeh ◽  
Aydin Hassanzadeh ◽  
Arman Milany ◽  
Hamid Farrokh Ghatte

Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1271
Author(s):  
Jeet Kumar Sonwani ◽  
Gaofeng Jia ◽  
Hussam N. Mahmoud ◽  
Zhenqiang Wang

Special concentrically braced frames (SCBFs) located in regions close to earthquake faults may be subjected to near-fault ground motions, often characterized by pulses with long periods. These near-fault pulses could impose additional seismic demands on structures and increase the risk for structural collapse. Currently, there is limited research on the seismic collapse risk of SCBFs under near-fault earthquakes. This paper uses a general simulation-based framework to assess the seismic collapse risk of SCBFs under near-fault earthquakes. To quantify the large variability and uncertainty associated with the seismic hazard, a stochastic ground motion (SGM) model is used where the near-fault pulse characteristics are explicitly incorporated. The uncertainties in the SGM model parameters (including the near-fault pulse characteristics) are addressed through appropriate selection of probability distribution functions. To accurately predict the occurrence of collapse, numerical models capable of capturing the nonlinear and collapse behavior are established and used. Efficient stochastic simulation approaches are proposed to estimate the seismic collapse risk with or without considering the near-fault pulse. As an illustration, the seismic collapse risks of two SCBFs are investigated and compared. Probabilistic sensitivity analysis is also carried out to investigate the importance of uncertain model parameters within the SGM towards the seismic collapse risk.


2020 ◽  
pp. 136943322097728
Author(s):  
Haoran Yu ◽  
Weibin Li

Reduced web section (RWS) connections and welded flange plate (WFP) connections can both effectively improve the seismic performance of a structure by moving plastic hinges to a predetermined location away from the column face. In this paper, two kinds of steel frames—with RWS connections and WFP connections—as well as different frames with welded unreinforced flange connections were studied through seismic fragility analysis. The numerical simulation was conducted by using multiscale FE modelling. Based on the incremental dynamic analysis and pushover analysis methods, probabilistic seismic demand analysis and seismic capability analysis were carried out, respectively. Finally, combined with the above analysis results, probabilistic seismic fragility analysis was conducted on the frame models. The results showed that the RWS connection and WFP connection (without double plates) have little influence on reducing the maximum inter-storey drift ratio under earthquake action. RWS connections slightly reduce the seismic capability in non-collapse stages and improve the seismic collapse resistance of a structure, which exhibits good structural ductility. WFP connections can comprehensively improve the seismic capability of a structure, but the seismic collapse resistance is worse than that of RWS connections when the structure has a large number of storeys. The frame with WFP connections has a lower failure probability at every seismic limit state, while the frame with RWS connections sacrifices some of its structural safety in non-collapse stages to reduce the collapse probability.


Structures ◽  
2021 ◽  
Vol 30 ◽  
pp. 62-74
Author(s):  
Seyed Amin Mousavi ◽  
Seyed Mehdi Zahrai ◽  
Ali Akhlagh Pasand

Sign in / Sign up

Export Citation Format

Share Document