Spatial Variation and Correlation between Undrained Shear Strength and Plasticity Index

Author(s):  
Xin Kang ◽  
Site Onyejekwe ◽  
Louis Ge ◽  
Richard Stephenson
Clay Minerals ◽  
2016 ◽  
Vol 51 (3) ◽  
pp. 517-528 ◽  
Author(s):  
Vicki Moon

AbstractHalloysite-rich soils derived fromin situweathering of volcanic materials support steep stable slopes, but commonly fail under triggers of earthquakes or rainfall. Resulting landslides are slideflow processes, ranging from small translational slides to larger rotational failures with scarps characteristic of sensitive soils. Remoulding of failed materials results in high-mobility flows with apparent friction angles of 10–16°. The materials characteristically have high peak-friction angles (∼25– 37°), low cohesion (∼12–60 kN m−2) and plasticity ( plasticity index ∼10–48%), and low dry bulk density (∼480–1,080 kg m−3) with small pores due to the small size of the halloysite minerals. They remain saturated under most field conditions, with liquidity indexes frequently >1. Remoulded materials have limited cohesion (<5 kN m−2) and variable residual friction angles (15°–35°). Halloysite mineral morphology affects the rheology of remoulded suspensions: tubular minerals have greater viscosity and undrained shear strength than spherical morphologies.


1990 ◽  
Vol 27 (3) ◽  
pp. 373-386 ◽  
Author(s):  
Étienne J. Windisch ◽  
Raymond N. Yong

Statistics for data collected on eastern Canadian clays (Champlain, Goldthwait, Tyrrell, and Laflamme marine clays and Barlow–Ojibway lacustrine clays) are computed and analyzed. These clays are divided into three groups: eastern Canadian marine clays, Champlain clays (as an important part of the first group), and Barlow–Ojibway lacustrine clays. The analysis reveals significant differences between eastern Canadian clays and Scandinavian clays. Some relationships proposed in the literature and based on plasticity index, liquidity index, and plastic limit are found to be inapplicable to eastern Canadian clays. On the basis of a proposed method for estimating the undrained shear strength of normally consolidated eastern Canadian marine clays, the overconsolidation ratio is found to be equal to the ratio of the in situ undrained shear strength to the estimated normally consolidated undrained shear strength. Key words: undrained shear strength, plasticity index, liquidity index, plastic limit, statistical evaluation, over-consolidation ratio, lacustrian clays.


Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6026
Author(s):  
Bin Wang ◽  
Kang Liu ◽  
Yong Wang ◽  
Quan Jiang

Site investigations of the soils are considered very important for evaluation of the site conditions, as well as the design and construction for the project built in it. Taihu tunnel is thus far the longest tunnel constructed in the lake in China, with an entire length of over 10 km. However, due to the very insufficient site data obtained for the lacustrine clay in the Taihu lake area, a series of self-boring pressuremeter (SBPM) field tests was therefore carried out. Undrained shear strengths were deduced from the SBPM test, with the results showing generally higher than those obtained from the laboratory tests, which may be attributed to the disturbance to the soil mass during the sampling process. Degradation characteristics of the soil shear modulus (Gs) were mainly investigated, via a thorough comparison between different soil layers, and generally, the shear modulus would cease its decreasing trends and become stable when the shear strain reaches over 1%. Meanwhile, it was found that a linear relationship between the plasticity index and the shear modulus, and between the decay rate of the shear modulus and the plasticity index as well, could be developed. Further statistical analysis over the undrained shear strength and shear modulus distribution of the soils shows that the undrained shear strength of the soils follows a normal distribution, while the shear modulus follows a log-normal distribution. More importantly, the spatial correlation length of the shear modulus is found much smaller than that of the undrained strength.


Sign in / Sign up

Export Citation Format

Share Document