Experimental Study on the Effect of Gravity Drainage System on Beach Stabilization

Author(s):  
Hiroshi Kanazawa ◽  
Fumihiko Matsukawa ◽  
Kazumasa Katoh ◽  
Iwao Hasegawa
2021 ◽  
Author(s):  
Obinna Somadina Ezeaneche ◽  
Robinson Osita Madu ◽  
Ishioma Bridget Oshilike ◽  
Orrelo Jerry Athoja ◽  
Mike Obi Onyekonwu

Abstract Proper understanding of reservoir producing mechanism forms a backbone for optimal fluid recovery in any reservoir. Such an understanding is usually fostered by a detailed petrophysical evaluation, structural interpretation, geological description and modelling as well as production performance assessment prior to history matching and reservoir simulation. In this study, gravity drainage mechanism was identified as the primary force for production in reservoir X located in Niger Delta province and this required proper model calibration using variation of vertical anisotropic ratio based on identified facies as against a single value method which does not capture heterogeneity properly. Using structural maps generated from interpretation of seismic data, and other petrophysical parameters from available well logs and core data such as porosity, permeability and facies description based on environment of deposition, a geological model capturing the structural dips, facies distribution and well locations was built. Dynamic modeling was conducted on the base case model and also on the low and high case conceptual models to capture different structural dips of the reservoir. The result from history matching of the base case model reveals that variation of vertical anisotropic ratio (i.e. kv/kh) based on identified facies across the system is more effective in capturing heterogeneity than using a deterministic value that is more popular. In addition, gas segregated fastest in the high case model with the steepest dip compared to the base and low case models. An improved dynamic model saturation match was achieved in line with the geological description and the observed reservoir performance. Quick wins scenarios were identified and this led to an additional reserve yield of over 1MMSTB. Therefore, structural control, facies type, reservoir thickness and nature of oil volatility are key forces driving the gravity drainage mechanism.


2012 ◽  
Vol 452-453 ◽  
pp. 538-542 ◽  
Author(s):  
Abdelkader Djehiche ◽  
Rekia Amieur ◽  
Mustafa Gafsi

This paper presents an experimental study of a homogenous earth dam. The work is focused to the search of solutions of problems encountered in the earth dams after their construction. One of the major problems is the choice and design of systems of drainage. The effective drainage system to prevent harmful accumulations of excess water is one of the most important roles of dams. Efficient drainage systems can improve the safety of earth dams. The paper presented herein reports the results obtained from the experimental study. Empiric relations have been obtained which can be help in the control of the flow rate in the chimney drain of the earth dams on pervious foundation, which can increase safety earth dams


Author(s):  
Shin-ichi Yanagishima ◽  
Kazumasa Katoh ◽  
Naoto Iwasa ◽  
Yoshiaki Kuriyama

2014 ◽  
Vol 4 (3) ◽  
pp. 66-72
Author(s):  
Sayriddin Shakhobovich SAYRIDDINOV

Рresents the results of experimental research which allow to give engineering-based recommendations about determination of waves characteristics in interaction with local vertical narrowing of the riverbed and improve methods of calculation and designing of hydraulic and engineering objects, water supply and drainage system.


Sign in / Sign up

Export Citation Format

Share Document