Commissioning and Vibration Isolation of a Low Cost UAS for Industrial and Environmental Remote Sensing Applications

Author(s):  
J. Yuen ◽  
S. Dwyer ◽  
A. Kotchon ◽  
W. Moussa ◽  
M. Lipsett
2005 ◽  
Vol 11 (11) ◽  
pp. 1339-1356 ◽  
Author(s):  
Adam L. Webster ◽  
William H. Semke

The ability to eliminate, or effectively control, vibration in remote sensing applications is critical. Any perturbations of an imaging system are greatly magnified over the hundreds of kilometers from the orbiting space platform to the Earth's surface. Space platforms, such as the International Space Station, are not as predictable or stable as many other spacecraft. Therefore, an effective vibration isolation and/or absorber system is needed that operates over a wide range of excitation frequencies. A passive system is also preferred to reduce the resources required, as well as to provide a reliable and self-contained system. To accomplish these goals, a vibration amplitude limiting system has been developed that uses both vibration isolation and absorber components. Viscoelastic structural elements that act as both a spring and a damper in a single element are implemented in the design. This configuration also demonstrates a favorable frequencydependent response and produces a system with improved dynamic behavior compared to conventional spring and damper designs. This rotation limiting vibration system has been designed and analyzed for use in digital remote sensing imaging. The transmissibility and the ground jitter associated with the system are determined. A summary of these results will be presented along with a comparison to a more conventional vibration isolation/absorber system.


Author(s):  
R. A. Oliveira ◽  
E. Khoramshahi ◽  
J. Suomalainen ◽  
T. Hakala ◽  
N. Viljanen ◽  
...  

The use of drones and photogrammetric technologies are increasing rapidly in different applications. Currently, drone processing workflow is in most cases based on sequential image acquisition and post-processing, but there are great interests towards real-time solutions. Fast and reliable real-time drone data processing can benefit, for instance, environmental monitoring tasks in precision agriculture and in forest. Recent developments in miniaturized and low-cost inertial measurement systems and GNSS sensors, and Real-time kinematic (RTK) position data are offering new perspectives for the comprehensive remote sensing applications. The combination of these sensors and light-weight and low-cost multi- or hyperspectral frame sensors in drones provides the opportunity of creating near real-time or real-time remote sensing data of target object. We have developed a system with direct georeferencing onboard drone to be used combined with hyperspectral frame cameras in real-time remote sensing applications. The objective of this study is to evaluate the real-time georeferencing comparing with post-processing solutions. Experimental data sets were captured in agricultural and forested test sites using the system. The accuracy of onboard georeferencing data were better than 0.5 m. The results showed that the real-time remote sensing is promising and feasible in both test sites.


2009 ◽  
Vol 30 (9) ◽  
pp. 2309-2319 ◽  
Author(s):  
I. D. Sanches ◽  
M. P. Tuohy ◽  
M. J. Hedley ◽  
M. R. Bretherton

Author(s):  
Adam L. Webster ◽  
William H. Semke

The ability to eliminate, or effectively control, vibration in remote sensing applications is critical. Any perturbations of an imaging system are greatly magnified over the hundreds of kilometers from the orbiting space platform to the Earth’s surface. Space platforms, such as the International Space Station, are not as predictable or stable as many other spacecraft. Therefore, an effective vibration isolation and/or absorber system is needed that operates over a wide range of excitation frequencies. A passive system is also preferred to reduce the resources required, as well as provide a reliable and self-contained system. To accomplish these goals, a vibration amplitude limiting system has been developed that uses both vibration isolation and absorber components. Viscoelastic structural elements that act as both a spring and a damper in a single element are implemented in the design. This configuration also demonstrates a favorable frequency dependent response and produces a system with improved dynamic behavior compared to conventional spring and damper designs. This rotation limiting vibration system has been designed and analyzed for use in digital remote sensing imaging. The transmissibility and the ground jitter associated with the system are determined. A summary of these results will be presented along with a comparison to a more conventional vibration isolation/absorber system.


Sign in / Sign up

Export Citation Format

Share Document