Implementation of Site-Specific Seismic Hazard Analysis and Ground Motion Selection and Modification for Use in Nonlinear Response History Analysis

Author(s):  
Silvia Mazzoni ◽  
Kamalpreet Kalsi ◽  
Mark Sinclair ◽  
Mahmoud Hachem
Author(s):  
Gareth J. Morris ◽  
Andrew J. Thompson ◽  
James N. Dismuke ◽  
Brendon A. Bradley

Nonlinear response history analysis (NLRHA), or so-called “nonlinear time history analysis”, is adopted by practicing structural engineers who implement performance-based seismic design and/or assessment procedures. One important aspect in obtaining reliable output from the NLRHA procedure is the input ground motion records. The underlying intention of ground motion selection and amplitude-scaling procedures is to ensure the input for NLRHA is representative of the ground shaking hazard level, for a given site and structure. The purpose of this paper is to highlight the salient limitations of the ground motion selection and scaling requirements in Sections 5.5 and 6.4 of the New Zealand (NZ) loading standard NZS 1170.5 (2004). From a NZ regulatory perspective; there is no specific framework for seismic hazard analysis and ground motion selection (thus self-regulation is the current norm). In contrast, NZS 1170.5 contains many prescriptive requirements for scaling and applying records which are challenging to satisfy in practice. Also discussed within, there are implications for more modern guidance documents in NZ, such as the 2017 “Assessment Guidelines” for existing buildings, which cite NZS 1170.5, a standard which is at least 16 years old (draft issued in 2002). To emphasize the above issues with NZS 1170.5, this paper presents a summary of the more contemporary approaches in the US standards ASCE 7-16 (new buildings) and ASCE 41-17 (existing buildings), along with some examples of the more stringent US requirements for Tall Buildings.


2019 ◽  
Vol 35 (2) ◽  
pp. 759-786 ◽  
Author(s):  
Karim Tarbali ◽  
Brendon A. Bradley ◽  
Jack W. Baker

This paper focuses on the selection of ground motions for seismic response analysis in the near-fault region, where directivity effects are significant. An approach is presented to consider forward directivity velocity pulse effects in seismic hazard analysis without separate hazard calculations for ‘pulse-like’ and ‘non-pulse-like’ ground motions, resulting in a single target hazard (at the site of interest) for ground motion selection. The ability of ground motion selection methods to appropriately select records that exhibit pulse-like ground motions in the near-fault region is then examined. Applications for scenario and probabilistic seismic hazard analysis cases are examined through the computation of conditional seismic demand distributions and the seismic demand hazard. It is shown that ground motion selection based on an appropriate set of intensity measures (IMs) will lead to ground motion ensembles with an appropriate representation of the directivity-included target hazard in terms of IMs, which are themselves affected by directivity pulse effects. This alleviates the need to specify the proportion of pulse-like motions and their pulse periods a priori as strict criteria for ground motion selection.


2017 ◽  
Vol 8 (2) ◽  
pp. 39-59 ◽  
Author(s):  
Swarup Ghosh ◽  
Subrata Chakraborty

This article outlines the performance-based seismic risk assessment (PBSRA) of structures requiring probabilistic seismic hazard analysis (PSHA) to obtain hazard curves and an evaluation of the demand model by a nonlinear structural response analysis under properly selected ground motion records. Unfortunately, such site-specific information is not readily available for Northeast region of India. The present study focuses on these two aspects to supplement the PBSRA. The estimations of hazard curves are demonstrated by considering the seismicity within 300 km radius around the considered locations and specified exposure period. Due to limited availability of natural records in this region, synthetic accelerograms are generated using stochastic point source models by identifying the most contributing magnitude distance combinations from disaggregation of the PSHA results. The significant variabilities observed in the estimated hazard, synthetic accelerograms and nonlinear building responses in the various locations indicate the need of explicit site-specific analysis for PBRSA of structures in the region.


Author(s):  
A. Boominathan ◽  
S. Krishna Kumar

Design ground motions are usually developed by one of the two approaches: site-specific analyses or from provisions of building codes. Although contemporary codes do consider approximately the site effects, they provide more conservative estimates. Hence it is preferred to carry out site specific analysis which involves both the seismic hazard analysis and ground response analysis. This article presents a site specific analysis for a seismically vulnerable site near Ahmedabad, Gujarat. The seismic hazard analysis was carried out by DSHA approach considering seismicity and seismotectonics within 250km radius. The site is predominantly characterized by deep stiff sandy clay deposits. Extensive shear wave velocity measurement by cross hole test is used for site classification and ground response analysis. The ground response analysis was carried out by equivalent linear approach using SHAKE2000. It is found that the deep stiff soil site considered is found to amplify the ground motion. The site specific response spectra obtained from RRS analysis is compared with the codal provision which reveals high spectral acceleration in site specific spectra for mid period range.


Author(s):  
A. Boominathan ◽  
Krishna Kumar S.

Design ground motions are usually developed by one of the two approaches: site-specific analyses or from provisions of building codes. Although contemporary codes do consider approximately the site effects, they provide more conservative estimates. Hence it is preferred to carry out site specific analysis which involves both the seismic hazard analysis and ground response analysis. This article presents a site specific analysis for a seismically vulnerable site near Ahmedabad, Gujarat. The seismic hazard analysis was carried out by DSHA approach considering seismicity and seismotectonics within 250km radius. The site is predominantly characterized by deep stiff sandy clay deposits. Extensive shear wave velocity measurement by cross hole test is used for site classification and ground response analysis. The ground response analysis was carried out by equivalent linear approach using SHAKE2000. It is found that the deep stiff soil site considered is found to amplify the ground motion. The site specific response spectra obtained from RRS analysis is compared with the codal provision which reveals high spectral acceleration in site specific spectra for mid period range.


2012 ◽  
Vol 28 (3) ◽  
pp. 1243-1267 ◽  
Author(s):  
Juan C. Reyes ◽  
Anil K. Chopra

The modal-pushover-based-scaling (MPS) procedure, currently restricted to scale one component of ground motion records, is extended herein to scale two horizontal components. The accuracy and efficiency of the MPS procedure is evaluated here by applying it to an existing nine-story building, symmetric in plan. The computer model developed for the building is validated against motions of the building recorded during the Chino Hills earthquake (2008). It is demonstrated that nonlinear response history analysis (RHA) of the building for a small set of records scaled by the MPS procedure provided a highly accurate estimate of the engineering demand parameters (EDPs), accompanied by significantly reduced record-to-record variability of the responses. Furthermore, the MPS procedure is shown to be much superior to the procedure specified in the ASCE/SEI 7-05 standard for scaling two components of ground motion records.


2021 ◽  
pp. 875529302098197
Author(s):  
Jack W Baker ◽  
Sanaz Rezaeian ◽  
Christine A Goulet ◽  
Nicolas Luco ◽  
Ganyu Teng

This manuscript describes a subset of CyberShake numerically simulated ground motions that were selected and vetted for use in engineering response-history analyses. Ground motions were selected that have seismological properties and response spectra representative of conditions in the Los Angeles area, based on disaggregation of seismic hazard. Ground motions were selected from millions of available time series and were reviewed to confirm their suitability for response-history analysis. The processes used to select the time series, the characteristics of the resulting data, and the provided documentation are described in this article. The resulting data and documentation are available electronically.


2020 ◽  
Vol 18 (14) ◽  
pp. 6119-6148
Author(s):  
Graeme Weatherill ◽  
Fabrice Cotton

Abstract Regions of low seismicity present a particular challenge for probabilistic seismic hazard analysis when identifying suitable ground motion models (GMMs) and quantifying their epistemic uncertainty. The 2020 European Seismic Hazard Model adopts a scaled backbone approach to characterise this uncertainty for shallow seismicity in Europe, incorporating region-to-region source and attenuation variability based on European strong motion data. This approach, however, may not be suited to stable cratonic region of northeastern Europe (encompassing Finland, Sweden and the Baltic countries), where exploration of various global geophysical datasets reveals that its crustal properties are distinctly different from the rest of Europe, and are instead more closely represented by those of the Central and Eastern United States. Building upon the suite of models developed by the recent NGA East project, we construct a new scaled backbone ground motion model and calibrate its corresponding epistemic uncertainties. The resulting logic tree is shown to provide comparable hazard outcomes to the epistemic uncertainty modelling strategy adopted for the Eastern United States, despite the different approaches taken. Comparison with previous GMM selections for northeastern Europe, however, highlights key differences in short period accelerations resulting from new assumptions regarding the characteristics of the reference rock and its influence on site amplification.


Sign in / Sign up

Export Citation Format

Share Document