The Effect of Averaging Duration on Differences Observed between Gust Factors from Tropical and Extratropical Winds

Author(s):  
Rebecca Paulsen Edwards ◽  
John L. Schroeder
Keyword(s):  
1987 ◽  
Vol 40 (4) ◽  
pp. 393-406 ◽  
Author(s):  
Stuart D. Smith ◽  
Peter C. P. Chandler
Keyword(s):  

2001 ◽  
Vol 32 ◽  
pp. 175-181 ◽  
Author(s):  
Jean-Luc Michaux ◽  
Florence Naaim-Bouvet ◽  
Mohamed Naaim

AbstractThe Érosion torrentielle, neige et avalanche (Etna) unit of CEMAGREF and the Centre d’Etudes de la Neige of Météo-France have been working on snowdrift for 10 years. A numerical model was developed at CEMAGREF to simulate snowdrift (Naaim and others, 1998). To validate this model on in situ data, a high-altitude experimental site was developed, located at 2700 m a.s.l. at the Lac Blanc Pass near the Alpe d’Huez ski resort. It is a nearly flat area and faces winds primarily from north and south. After describing the experimental site, we present the processed data of winter 1998/99. First, we analyze the data from CEMAGREF’s acoustic snowdrift sensor. It is sensitive to snow depth and snow-particle type, so additional calibration is necessary. Nevertheless, it allowed us to study non- stationary aspects of drifting snow. An analysis of gust factors for wind and drifting snow indicates that strong wind-gust factors exist in the mountains, and that drifting snow is more important during a regular and strong wind episode than during high wind-gust periods. Therefore, the numerical model presented here uses only the recorded mean wind speed. The model, which attempts to reproduce several days of storm, takes into account the modification of input parameters (e.g wind speed) as a function of time. The comparison between numerical results and measurements for a given meteorological event shows good agreement.


2009 ◽  
Vol 48 (3) ◽  
pp. 534-552 ◽  
Author(s):  
Bo Yu ◽  
Arindam Gan Chowdhury

Abstract Gust factors are used to convert peak wind speeds averaged over a relatively short period (e.g., 3 s) to mean wind speeds averaged over a relatively long reference period (e.g., 1 h) or vice versa. Such conversions are needed for engineering, climatological, or forecasting purposes. In this paper, gust factors in tropical cyclone (TC) winds are estimated from Florida Coastal Monitoring Program (FCMP) observations of near-surface TC wind speeds representative of flow over the sea surface and over open flat terrain in coastal areas. Comparisons are made with gust factors in extratropical winds over open flat terrain that are available in the literature. According to the results of the study, for gust durations of less than 20 s, the Durst model underestimates, and the Krayer–Marshall model overestimates, gust factors of TC winds over surfaces with roughness specified in the American Society of Civil Engineers (ASCE) 7 Standard Commentary as typical of open terrain. Consideration should be given to these findings when updating the gust factors provided in the ASCE 7 Standard Commentary. The study also compares gust factors in TC winds obtained from FCMP data with gust factors in extratropical winds obtained from near-surface wind data collected at eight Automated Surface Observing System (ASOS) stations and concludes that, depending upon terrain roughness, gust factors in TC winds can be higher by about 10%–15% than gust factors in extratropical winds. The study also presents FCMP-based estimates of turbulence intensities and their variability and shows that turbulence intensities in TC winds increase as the terrain roughness increases. The longitudinal turbulence intensity can vary from storm to storm and can exceed its typical value by as much as 20%. It is recommended that future TC wind measurement campaigns obtain temperature data usable for stratification estimation purposes, as well as information on waves and storm surge upwind of the anemometer towers.


2017 ◽  
Author(s):  
Susanna Mohr ◽  
Michael Kunz ◽  
Alexandra Richter ◽  
Bodo Ruck

Abstract. Due to the small-scale and non-stationary nature of the convective wind gusts usually associated with thunderstorms, there is a considerable lack of knowledge regarding their characteristics and statistics. In an effort to remedy this situation, we investigated in this study a set of 110 climate stations of the German Weather Service between 1992 and 2014 to analyze the temporal and spatial distribution, intensity, and occurrence probability of convective gusts. Similar to thunderstorm activity, the frequency of convective gusts decreases gradually from South to North Germany. No further spatial structures, such as a relation to orography or climate conditions, can be identified regarding their strength or likelihood. Rather, high wind speeds of above 30 m s−1 can be expected everywhere in Germany with almost similar occurrence probabilities. A comparison of the 20-year return values of convective gusts with those of turbulent gusts demonstrates that the latter have higher frequencies, especially in northern Germany. However, for higher return periods, this effect can be reversed at some stations. The values of the convective gust factors are mainly in a range between 1 and 4 but can even reach values up to 10. Besides the dependency from the averaging time period of the mean wind, the values of the gust factors additionally depend on the event duration and the storm type, respectively.


Sign in / Sign up

Export Citation Format

Share Document