Influence of Parameters on Support Vector Machine for Landslide Displacement Prediction in Three Gorges Reservoir

Author(s):  
Haifeng Huang ◽  
Wu Yi ◽  
Kun Song
Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Yankun Wang ◽  
Huiming Tang ◽  
Tao Wen ◽  
Junwei Ma ◽  
Zongxing Zou ◽  
...  

Accurate landslide displacement prediction has great practical significance for mitigating geohazards. Traditional deterministic forecasting methods can provide only a single point value and cannot give the degree of uncertainty associated with the forecast, thereby failing to provide information on predictive confidence. This study applied interval prediction for landslide displacement. Taking the Tanjiahe landslide of the Three Gorges Reservoir Area as an example and considering the impact of seasonal variations in reservoir level and rainfall, the uncertainties associated with landslide displacement prediction were quantified into prediction intervals (PIs) by a bootstrapped least-square support vector machine (LSSVM) method (B-LSSVM). The proposed method consists of three steps: First, the LSSVM and bootstrapping were combined to estimate the true regression means of landslide displacement and the variance with respect to model misspecification uncertainties. Second, a new LSSVM model optimized by a genetic algorithm (GA) was implemented to estimate the noise variance. Finally, the point prediction was derived from the regression means, and the PIs were constructed by combining the regression mean, the model variance, and the noise variance. We applied the proposed method to predict the displacement of four GPS monitoring points of the Tanjiahe landslide, and we comprehensively compared the prediction accuracy and the quality of the constructed PIs with benchmark methods. A simulation and performance comparison showed that the proposed method is a promising technique for providing accurate and reliable prediction results for landslide displacement.


2021 ◽  
Author(s):  
Taorui Zeng ◽  
Hongwei Jiang ◽  
Qingli Liu ◽  
Kunlong Yin

Abstract Landslide displacement prediction is essential to establish the early warning system (EWS). According to the dynamic characteristics of landslide evolution and the shortcomings of the traditional static prediction model, a dynamic prediction model of landslide displacement based on long short-term memory (LSTM) neural networks was proposed. Meanwhile, the Variational modal decomposition (VMD) theory was used to decompose the cumulative displacement and triggering factors, which not only give clear physical meaning to each displacement subsequence, but also closely connect the rock and soil conditions with the influence of external factors. Besides, the maximum information coefficient (MIC) was used to sort the redundant features. The LSTM is a dynamic model that can remember historical information and apply it to the current output. The hyperparameters of the LSTM model was optimized by the Grey wolf optimizer (GWO), and the dynamic one-step prediction was carried out for each displacement. All the predicted values were superimposed to complete the displacement prediction based on the time series model. The Tangjiao landslide in the Three Gorges Reservoir area (TGRA), China, was taken as a case study. The displacement data of monitoring sites GPS06 had step-like characteristics. Measured data from March 2007 to December 2016 were selected for analysis. The results indicate that the root mean square error (RMSE) of the test set and validation set are 23.240 mm and 64.714 mm, respectively, and the coefficient of determination (R2) are 0.997 and 0.971, respectively. This model provides a new idea and exploration for the displacement prediction of step-like characteristics landslide in the Three Gorges Reservoir area.


Author(s):  
Junwei Ma ◽  
Xiao Liu ◽  
Xiaoxu Niu ◽  
Yankun Wang ◽  
Tao Wen ◽  
...  

Data-driven models have been extensively employed in landslide displacement prediction. However, predictive uncertainty, which consists of input uncertainty, parameter uncertainty, and model uncertainty, is usually disregarded in deterministic data-driven modeling, and point estimates are separately presented. In this study, a probability-scheme combination ensemble prediction that employs quantile regression neural networks and kernel density estimation (QRNNs-KDE) is proposed for robust and accurate prediction and uncertainty quantification of landslide displacement. In the ensemble model, QRNNs serve as base learning algorithms to generate multiple base learners. Final ensemble prediction is obtained by integration of all base learners through a probability combination scheme based on KDE. The Fanjiaping landslide in the Three Gorges Reservoir area (TGRA) was selected as a case study to explore the performance of the ensemble prediction. Based on long-term (2006–2018) and near real-time monitoring data, a comprehensive analysis of the deformation characteristics was conducted for fully understanding the triggering factors. The experimental results indicate that the QRNNs-KDE approach can perform predictions with perfect performance and outperform the traditional backpropagation (BP), radial basis function (RBF), extreme learning machine (ELM), support vector machine (SVM) methods, bootstrap-extreme learning machine-artificial neural network (bootstrap-ELM-ANN), and Copula-kernel-based support vector machine quantile regression (Copula-KSVMQR). The proposed QRNNs-KDE approach has significant potential in medium-term to long-term horizon forecasting and quantification of uncertainty.


Sign in / Sign up

Export Citation Format

Share Document