Local Calibration of Rigid Pavement Cracking Model in the New Mechanistic- Empirical Pavement Design Guide using Bootstrapping

Author(s):  
Syed W. Haider ◽  
Wouter C. Brink ◽  
Neeraj Buch
2018 ◽  
Vol 21 (11) ◽  
pp. 1347-1361 ◽  
Author(s):  
Shi Dong ◽  
Jian Zhong ◽  
Susan L. Tighe ◽  
Peiwen Hao ◽  
Daniel Pickel

2021 ◽  
Author(s):  
Maryam Amir

The AASHTO Mechanistic-Empirical Pavement Design Guide requires local calibration to account for local conditions, materials, and engineering practices. Previous local calibration studies in Ontario focused mainly on permanent deformation models for pavement rutting. The objectives of this study are twofold. First, to provide an enhanced calibration for the rutting models by using more vigilantly cross-verified input data and updated observed rutting data. Second, to perform a trial calibration for the international roughness index (IRI) model by considering three different calibration methods. Cracking models calibration, being performed by another colleague, has not yet been finalized; therefore, the IRI model calibration cannot be finalized in this study. Based upon 63 Superpave sections, the local calibration coefficients were found to be βAC = 1.7692, βT = 1.0, βN = 0.6262, βGB = 0.0968 and βSG = 0.2787 , which reduced the standard deviation of residuals to a value of 1 mm. The IRI calibration study found that the initial IRI value plays an important role in the calibration. Keywords: International Roughness Index (IRI) model; local calibration; Mechanistic-Empirical Pavement Design Guide (MEPDG); rutting model; Superpave.


Author(s):  
Georgene Malone Geary ◽  
Yichang (James) Tsai

3D pavement data are increasing in use and availability and open up new opportunities to evaluate variability in pavements. The majority of information we currently have on existing pavements is the result of the Long Term Pavement Performance Program (LTPP). While the program is comprehensive and the data are immense, the study sections are typically only 500 ft in length, which limits the ability to accurately gauge the variability of the distresses in a pavement over a longer length, especially cracking in Jointed Plain Concrete (JPC) slabs. 3D pavement data already collected by transportation agencies have the opportunity to complement LTPP data to analyze variability and improve the use of LTPP data. This paper presents a unique method to complement LTPP data using 3D pavement data, consisting of four steps: (1) crack detection using 3D pavement data; (2) categorize detected cracks by orientation and extent by slab using 3D slab-based methodology; (3) convert categorized slab level cracking into mechanistic-empirical pavement design guide cracking; and (4) perform local calibration with the 3D converted input values. The method uses 3D pavement data to provide a non-discrete value for percent cracking in GPS-3 LTPP sections for the purposes of local calibration. The proposed method is shown to be feasible using 3D pavement data and two JPC LTPP sections in Georgia. The method could be extended to any of the state Departments of Transportation that have active LTPP sections and are now or will shortly be collecting 3D pavement data.


2021 ◽  
Author(s):  
Gulfam E. Jannat

The AASHTO Mechanistic-Empirical Pavement Design Guide (MEPDG) includes empirical distress models that need both global and local calibrations. The local calibration requires developing a database that would reflect local environments, design and maintenance practices in a particular jurisdictional region. The objective of the thesis is to develop a pavement database for local calibration before the MEPDG is to be implemented in Ontario. The database involves a hierarchical framework of the input parameters required for DARWin-ME, and the measured performance data are based on the MTO’s PMS-2. To demonstrate the validity of the developed database a preliminary local calibration including clustering analysis is carried out for the IRI and total rutting. The calibration-validation analysis suggests that the IRI model can be best clustered based on the geographical zone whereas the highway functional class is the best clustering parameter for rutting during the local calibration.


2021 ◽  
Author(s):  
Gulfam E. Jannat

The AASHTO Mechanistic-Empirical Pavement Design Guide (MEPDG) includes empirical distress models that need both global and local calibrations. The local calibration requires developing a database that would reflect local environments, design and maintenance practices in a particular jurisdictional region. The objective of the thesis is to develop a pavement database for local calibration before the MEPDG is to be implemented in Ontario. The database involves a hierarchical framework of the input parameters required for DARWin-ME, and the measured performance data are based on the MTO’s PMS-2. To demonstrate the validity of the developed database a preliminary local calibration including clustering analysis is carried out for the IRI and total rutting. The calibration-validation analysis suggests that the IRI model can be best clustered based on the geographical zone whereas the highway functional class is the best clustering parameter for rutting during the local calibration.


2021 ◽  
Author(s):  
Gyan Prasad Gautam

The rutting models in the AASHTO Mechanistic-Empirical Pavement Design Guide (MEPDG) have been calibrated to Ontario’s conditions for flexible pavements of Marshall mixes, and have yet to be calibrated for the Superpave materials. This study differs from previous studies in several counts: First, the local calibration database included both Superpave and Marshall mixes. Second, two of the five local calibration parameters (the temperature and traffic exponents) were pre-fixed based on a secondary study of the NCHRP 719 report. Third, both cross-sectional and longitudinal calibrations were performed and compared. It was concluded that the Superpave and Marshall mix pavements should be separately treated in the local calibration and that the cross-sectional and longitudinal calibrations behaved drastically differently in terms of residual errors. A set of local calibration parameters were recommended for future pavement design. It was recommended that trench investigations be done to further validate the results from the study.


2021 ◽  
Author(s):  
Gyan Prasad Gautam

The rutting models in the AASHTO Mechanistic-Empirical Pavement Design Guide (MEPDG) have been calibrated to Ontario’s conditions for flexible pavements of Marshall mixes, and have yet to be calibrated for the Superpave materials. This study differs from previous studies in several counts: First, the local calibration database included both Superpave and Marshall mixes. Second, two of the five local calibration parameters (the temperature and traffic exponents) were pre-fixed based on a secondary study of the NCHRP 719 report. Third, both cross-sectional and longitudinal calibrations were performed and compared. It was concluded that the Superpave and Marshall mix pavements should be separately treated in the local calibration and that the cross-sectional and longitudinal calibrations behaved drastically differently in terms of residual errors. A set of local calibration parameters were recommended for future pavement design. It was recommended that trench investigations be done to further validate the results from the study.


Sign in / Sign up

Export Citation Format

Share Document