Local Calibration of Mechanistic-Empirical Pavement Design Guide for Flexible Pavement Design

2008 ◽  
Vol 2087 (1) ◽  
pp. 131-141 ◽  
Author(s):  
Naresh R. Muthadi ◽  
Y. Richard Kim
2018 ◽  
Vol 21 (11) ◽  
pp. 1347-1361 ◽  
Author(s):  
Shi Dong ◽  
Jian Zhong ◽  
Susan L. Tighe ◽  
Peiwen Hao ◽  
Daniel Pickel

2012 ◽  
Vol 39 (7) ◽  
pp. 812-823
Author(s):  
Leonnie Kavanagh ◽  
Ahmed Shalaby

A damage analysis was conducted on a spring weight restricted flexible pavement to quantify the effects of reduced tire pressure on pavement life and to compare the damage predictions from the Asphalt Institute (AI) and the Mechanistic Empirical Pavement Design Guide (MEPDG) models. The models were used to predict the number of repetitions to fatigue and rutting failure at three maximum loads and at high and low tire pressures. Based on the results, the AI and MEPDG predictions were statistically different for both fatigue cracking and rutting damage, based on the t-test at 95% confidence limits. The AI model predicted 31% lower fatigue damage than the MEPDG, but 56% higher rutting damage. However, both models produced similar trends in predicting the relative effects of reduced tire pressure and load levels on pavement life. The methodology and results of the analysis are presented in this paper.


2021 ◽  
Author(s):  
Omar M. Sharif

The Mechanistic-Empirical Pavement Design Guide (MEPDG), developed by the American Association of State Highway and Transportation Officials (AASHTO) under the directive of the U.S. National Cooperative Highway Research Program (NCHRP) Project 1-37A, is the latest development in the concept and theories for the analysis and design of new pavements and of overlays for the existing pavements. While MEPDG is waiting for its full-scale implementation and to replace the traditional pavement design methods, it is desirable to make use of the performance prediction capacity of the MEPDG for accurate life-cycle costing analysis. The objective of this study is to review the state of the art and state of the practices for LCC and the new MEPDG methodology for flexible pavement design/preservation, and explore a framework for the integration of LCC into the new MEPDG, which would help the pavement agencies to evaluate the most economic (cost-effective) flexible pavement design for a new roadway section and overlay design for an existing flexible pavement as well as the preservation (maintenance and rehabilitation) time/strategy based on MEPDG methodology.


2021 ◽  
Author(s):  
Maryam Amir

The AASHTO Mechanistic-Empirical Pavement Design Guide requires local calibration to account for local conditions, materials, and engineering practices. Previous local calibration studies in Ontario focused mainly on permanent deformation models for pavement rutting. The objectives of this study are twofold. First, to provide an enhanced calibration for the rutting models by using more vigilantly cross-verified input data and updated observed rutting data. Second, to perform a trial calibration for the international roughness index (IRI) model by considering three different calibration methods. Cracking models calibration, being performed by another colleague, has not yet been finalized; therefore, the IRI model calibration cannot be finalized in this study. Based upon 63 Superpave sections, the local calibration coefficients were found to be βAC = 1.7692, βT = 1.0, βN = 0.6262, βGB = 0.0968 and βSG = 0.2787 , which reduced the standard deviation of residuals to a value of 1 mm. The IRI calibration study found that the initial IRI value plays an important role in the calibration. Keywords: International Roughness Index (IRI) model; local calibration; Mechanistic-Empirical Pavement Design Guide (MEPDG); rutting model; Superpave.


Author(s):  
Rahma Ibrahim Ibrahim ◽  
Mostafa Hossam ElDin Ali ◽  
Omar Sameh El Marakby ◽  
Noura Mohamed Soussa ◽  
Yomna Mohamed Abdel Aziz ◽  
...  

The Mechanistic-Empirical principles were used to develop a software, known as AASHTOWare Pavement ME Design. It is a design and analysis software, designed according to the latest AASHTO standards, the Mechanistic Empirical Pavement Design Guide MEPDG approach, which identifies the causes of stresses in pavement structures and forecasts the pavement’s performance throughout its lifespan. Due to its sophisticated complex design, the AASHTOware is of constrained availability in the market. However, due to its significance and its ability to revolutionize the industry, this paper discusses a proposed flexible pavement design tables based on the MEPDG that is founded on Egyptian traffic loadings and material characteristics. This study is divided into two phases; the first is concerned with evaluating the performance of an actual Egyptian roadway pavement design while the second aims to develop a new design tool integrating traffic, climate, and material. The research results showed the poor expected performance of the studied roadway pavement in terms of rutting and fatigue cracking. This research also provided a basic flexible pavement design tables using the MEPDG approach and based on the Egyptian materials, climatic and loading conditions.


Sign in / Sign up

Export Citation Format

Share Document