Local calibration of the fatigue cracking models in the Mechanistic-Empirical Pavement Design Guide for Tennessee

2017 ◽  
Vol 18 (sup3) ◽  
pp. 130-138 ◽  
Author(s):  
Hongren Gong ◽  
Baoshan Huang ◽  
Xiang Shu ◽  
Sampson Udeh
2021 ◽  
Author(s):  
Chowdhury Jannatul Sifat E Ahmed

The AASHTO Mechanistic-Empirical Pavement Design Guide (MEPDG) introduces a pavement design method which uses both the mechanistic analyses and empirical models to predict pavement distresses and performance, which needs to be calibrated to local conditions and engineering practices based on local pavement performance data. This thesis focuses on the local calibration of fatigue (both bottom-up and top-down) and thermal cracking models in MEPDG for superpave flexible pavements on Ontario’s highways. Simulations were run in the software, after developing a calibration database of Ontario’s provincial highway and the predicted data is compared to the observed data. Significant difference is found in the comparisons which need to be minimized by calibrating the distress models. A new regression model is used to optimize the calibration parameters by minimizing the standard deviations of the residuals between the predicted and observed distresses. The challenges encountered and concluding remarks developed during the local calibration process are discussed. Keywords: Local Calibration, Mechanistic Empirical Pavement Design Guide (MEPDG), Cracking Models, Fatigue Cracking, Thermal Cracking, superpave


2021 ◽  
Author(s):  
Chowdhury Jannatul Sifat E Ahmed

The AASHTO Mechanistic-Empirical Pavement Design Guide (MEPDG) introduces a pavement design method which uses both the mechanistic analyses and empirical models to predict pavement distresses and performance, which needs to be calibrated to local conditions and engineering practices based on local pavement performance data. This thesis focuses on the local calibration of fatigue (both bottom-up and top-down) and thermal cracking models in MEPDG for superpave flexible pavements on Ontario’s highways. Simulations were run in the software, after developing a calibration database of Ontario’s provincial highway and the predicted data is compared to the observed data. Significant difference is found in the comparisons which need to be minimized by calibrating the distress models. A new regression model is used to optimize the calibration parameters by minimizing the standard deviations of the residuals between the predicted and observed distresses. The challenges encountered and concluding remarks developed during the local calibration process are discussed. Keywords: Local Calibration, Mechanistic Empirical Pavement Design Guide (MEPDG), Cracking Models, Fatigue Cracking, Thermal Cracking, superpave


2018 ◽  
Vol 21 (11) ◽  
pp. 1347-1361 ◽  
Author(s):  
Shi Dong ◽  
Jian Zhong ◽  
Susan L. Tighe ◽  
Peiwen Hao ◽  
Daniel Pickel

2012 ◽  
Vol 39 (7) ◽  
pp. 812-823
Author(s):  
Leonnie Kavanagh ◽  
Ahmed Shalaby

A damage analysis was conducted on a spring weight restricted flexible pavement to quantify the effects of reduced tire pressure on pavement life and to compare the damage predictions from the Asphalt Institute (AI) and the Mechanistic Empirical Pavement Design Guide (MEPDG) models. The models were used to predict the number of repetitions to fatigue and rutting failure at three maximum loads and at high and low tire pressures. Based on the results, the AI and MEPDG predictions were statistically different for both fatigue cracking and rutting damage, based on the t-test at 95% confidence limits. The AI model predicted 31% lower fatigue damage than the MEPDG, but 56% higher rutting damage. However, both models produced similar trends in predicting the relative effects of reduced tire pressure and load levels on pavement life. The methodology and results of the analysis are presented in this paper.


2021 ◽  
Author(s):  
Maryam Amir

The AASHTO Mechanistic-Empirical Pavement Design Guide requires local calibration to account for local conditions, materials, and engineering practices. Previous local calibration studies in Ontario focused mainly on permanent deformation models for pavement rutting. The objectives of this study are twofold. First, to provide an enhanced calibration for the rutting models by using more vigilantly cross-verified input data and updated observed rutting data. Second, to perform a trial calibration for the international roughness index (IRI) model by considering three different calibration methods. Cracking models calibration, being performed by another colleague, has not yet been finalized; therefore, the IRI model calibration cannot be finalized in this study. Based upon 63 Superpave sections, the local calibration coefficients were found to be βAC = 1.7692, βT = 1.0, βN = 0.6262, βGB = 0.0968 and βSG = 0.2787 , which reduced the standard deviation of residuals to a value of 1 mm. The IRI calibration study found that the initial IRI value plays an important role in the calibration. Keywords: International Roughness Index (IRI) model; local calibration; Mechanistic-Empirical Pavement Design Guide (MEPDG); rutting model; Superpave.


Author(s):  
Rahma Ibrahim Ibrahim ◽  
Mostafa Hossam ElDin Ali ◽  
Omar Sameh El Marakby ◽  
Noura Mohamed Soussa ◽  
Yomna Mohamed Abdel Aziz ◽  
...  

The Mechanistic-Empirical principles were used to develop a software, known as AASHTOWare Pavement ME Design. It is a design and analysis software, designed according to the latest AASHTO standards, the Mechanistic Empirical Pavement Design Guide MEPDG approach, which identifies the causes of stresses in pavement structures and forecasts the pavement’s performance throughout its lifespan. Due to its sophisticated complex design, the AASHTOware is of constrained availability in the market. However, due to its significance and its ability to revolutionize the industry, this paper discusses a proposed flexible pavement design tables based on the MEPDG that is founded on Egyptian traffic loadings and material characteristics. This study is divided into two phases; the first is concerned with evaluating the performance of an actual Egyptian roadway pavement design while the second aims to develop a new design tool integrating traffic, climate, and material. The research results showed the poor expected performance of the studied roadway pavement in terms of rutting and fatigue cracking. This research also provided a basic flexible pavement design tables using the MEPDG approach and based on the Egyptian materials, climatic and loading conditions.


Author(s):  
Georgene Malone Geary ◽  
Yichang (James) Tsai

3D pavement data are increasing in use and availability and open up new opportunities to evaluate variability in pavements. The majority of information we currently have on existing pavements is the result of the Long Term Pavement Performance Program (LTPP). While the program is comprehensive and the data are immense, the study sections are typically only 500 ft in length, which limits the ability to accurately gauge the variability of the distresses in a pavement over a longer length, especially cracking in Jointed Plain Concrete (JPC) slabs. 3D pavement data already collected by transportation agencies have the opportunity to complement LTPP data to analyze variability and improve the use of LTPP data. This paper presents a unique method to complement LTPP data using 3D pavement data, consisting of four steps: (1) crack detection using 3D pavement data; (2) categorize detected cracks by orientation and extent by slab using 3D slab-based methodology; (3) convert categorized slab level cracking into mechanistic-empirical pavement design guide cracking; and (4) perform local calibration with the 3D converted input values. The method uses 3D pavement data to provide a non-discrete value for percent cracking in GPS-3 LTPP sections for the purposes of local calibration. The proposed method is shown to be feasible using 3D pavement data and two JPC LTPP sections in Georgia. The method could be extended to any of the state Departments of Transportation that have active LTPP sections and are now or will shortly be collecting 3D pavement data.


2020 ◽  
Author(s):  
Jieyi Bao ◽  
Xiaoqiang Hu ◽  
Cheng Peng ◽  
Yi Jiang ◽  
Shuo Li ◽  
...  

The Mechanistic-Empirical Pavement Design Guide (MEPDG) has been employed for pavement design by the Indiana Department of Transportation (INDOT) since 2009 and has generated efficient pavement designs with a lower cost. It has been demonstrated that the success of MEPDG implementation depends largely on a high level of accuracy associated with the information supplied as design inputs. Vehicular traffic loading is one of the key factors that may cause not only pavement structural failures, such as fatigue cracking and rutting, but also functional surface distresses, including friction and smoothness. In particular, truck load spectra play a critical role in all aspects of the pavement structure design. Inaccurate traffic information will yield an incorrect estimate of pavement thickness, which can either make the pavement fail prematurely in the case of under-designed thickness or increase construction cost in the case of over-designed thickness. The primary objective of this study was to update the traffic design input module, and thus to improve the current INDOT pavement design procedures. Efforts were made to reclassify truck traffic categories to accurately account for the specific axle load spectra on two-lane roads with low truck traffic and interstate routes with very high truck traffic. The traffic input module was updated with the most recent data to better reflect the axle load spectra for pavement design. Vehicle platoons were analyzed to better understand the truck traffic characteristics. The unclassified vehicles by traffic recording devices were examined and analyzed to identify possible causes of the inaccurate data collection. Bus traffic in the Indiana urban areas was investigated to provide additional information for highway engineers with respect to city streets as well as highway sections passing through urban areas. New equivalent single axle load (ESAL) values were determined based on the updated traffic data. In addition, a truck traffic data repository and visualization model and a TABLEAU interactive visualization dashboard model were developed for easy access, view, storage, and analysis of MEPDG related traffic data.


Sign in / Sign up

Export Citation Format

Share Document