Air Leakage, Moisture Migration, and Condensation in a Building Enclosure

Author(s):  
J. S. Der Ananian ◽  
S. M. O’Brien ◽  
C. M. Saldanha
2021 ◽  
Author(s):  
Cory Brun

Superinsulation is becoming increasingly attractive in the construction of energy efficient new homes or energy retrofit projects. By increasing the thermal insulation inside walls, new possible unforeseen building durability issues arise that were otherwise not present during standard 2”x6” construction, as there is less potential for drying. The reduced drying is often attributed to using low permeance materials in the building enclosure. One method to combat the reduced drying potential is to use the highest permeable vapour diffusion open materials for all building enclosure components such as the “Arctic Wall”. The purpose of this study is to determine how the Arctic Wall performs in Fairbanks, Alaska in addition to other climates, and how it also compares with other common vapour diffusion open methods. The results of experimental simulation using WUFI 5.2 hygrothermal software have shown that all vapour diffusion open walls have a potential for condensation that is most dominated by the heating load across the climates that were tested. The Arctic Wall was found to be safe to use in all climates using the tested methods, but still poses a potential risk due to potential condensation due to air leakage. The results of this study have shown that the Arctic Wall performed on par with other vapour diffusion open strategies.


Buildings ◽  
2012 ◽  
Vol 2 (4) ◽  
pp. 534-541 ◽  
Author(s):  
Lawrence Graham ◽  
Mark Scott ◽  
Aleka Pappas

2021 ◽  
Author(s):  
Sanam Pouyan

Air infiltration plays a significant role in designing and evaluating the performance and air quality of a building. Air leakage through an existing building enclosure can be detected by using experimental measurements, such as blower door test, tracer gas method, and transient approach. Estimating building air permeability through these methods can be expensive, time consuming, and weather reliant. The economical and environmental effect of air infiltration through building envelope requires higher level of research on locating air leakage locations and estimating air infiltration rate through new techniques, such as acoustical methods. In this research, a general review of airtightness detection and quantification method is presented and acoustical techniques are explored more in depth. Due to the significant impact of window systems on the total air infiltration through the building envelope, the correlation between the sound transmission loss and the air permeability through seven window assemblies in an existing building are explored to investigate acoustical method further. In addition, the acoustic air leakage detection method based on the standard ASTM E1186 is instigated. The results reveal the poor correlation between the airtightness of the windows and the acoustical analysis and investigations


2021 ◽  
Author(s):  
Sanam Pouyan

Air infiltration plays a significant role in designing and evaluating the performance and air quality of a building. Air leakage through an existing building enclosure can be detected by using experimental measurements, such as blower door test, tracer gas method, and transient approach. Estimating building air permeability through these methods can be expensive, time consuming, and weather reliant. The economical and environmental effect of air infiltration through building envelope requires higher level of research on locating air leakage locations and estimating air infiltration rate through new techniques, such as acoustical methods. In this research, a general review of airtightness detection and quantification method is presented and acoustical techniques are explored more in depth. Due to the significant impact of window systems on the total air infiltration through the building envelope, the correlation between the sound transmission loss and the air permeability through seven window assemblies in an existing building are explored to investigate acoustical method further. In addition, the acoustic air leakage detection method based on the standard ASTM E1186 is instigated. The results reveal the poor correlation between the airtightness of the windows and the acoustical analysis and investigations


2021 ◽  
Author(s):  
Cory Brun

Superinsulation is becoming increasingly attractive in the construction of energy efficient new homes or energy retrofit projects. By increasing the thermal insulation inside walls, new possible unforeseen building durability issues arise that were otherwise not present during standard 2”x6” construction, as there is less potential for drying. The reduced drying is often attributed to using low permeance materials in the building enclosure. One method to combat the reduced drying potential is to use the highest permeable vapour diffusion open materials for all building enclosure components such as the “Arctic Wall”. The purpose of this study is to determine how the Arctic Wall performs in Fairbanks, Alaska in addition to other climates, and how it also compares with other common vapour diffusion open methods. The results of experimental simulation using WUFI 5.2 hygrothermal software have shown that all vapour diffusion open walls have a potential for condensation that is most dominated by the heating load across the climates that were tested. The Arctic Wall was found to be safe to use in all climates using the tested methods, but still poses a potential risk due to potential condensation due to air leakage. The results of this study have shown that the Arctic Wall performed on par with other vapour diffusion open strategies.


Sign in / Sign up

Export Citation Format

Share Document