Evaluation of Shallow Water Waves on Vertical Walls

Author(s):  
R. M. Tran ◽  
D. L. Kriebel
2006 ◽  
Author(s):  
Claudio Zanzi ◽  
Pablo Go´mez ◽  
Julia´n Palacios ◽  
Joaqui´n Lo´pez ◽  
Julio Herna´ndez

A numerical study of the impact of shallow-water waves on vertical walls is presented. The air-liquid flow was simulated using a code for incompressible viscous flow, based on a local level set algorithm and a second-order approximate projection method. The level set transport and reinitialization equations were solved in a narrow band around the interface using an adaptive refined grid. The wave is assumed to be generated by a plunger which is accelerated in an open channel containing water. An arbitrary Lagrangian-Eulerian method was used to take into account the relative movement between the plunger and the end wall of the channel. The evolution of the free surface was visualized using a laser light sheet and a high-speed camera, with a sampling frequency of 1000 Hz. Several simulations were carried out to investigate the influence of the shape of the wave approaching the wall on the relevant quantities associated with the impact. The wave shape just before the impact was changed varying the total length of the channel. The results are compared with experimental results and with results obtained by other authors.


Author(s):  
Shin-ichi AOKI ◽  
Tomoki HAMANO ◽  
Taishi NAKAYAMA ◽  
Eiichi OKETANI ◽  
Takahiro HIRAMATSU ◽  
...  

2021 ◽  
Vol 126 (1) ◽  
Author(s):  
Kenan Šehić ◽  
Henrik Bredmose ◽  
John D. Sørensen ◽  
Mirza Karamehmedović

2000 ◽  
Vol 24 (10) ◽  
pp. 649-661 ◽  
Author(s):  
Mohamed Atef Helal

This paper is mainly concerned with the motion of an incompressible fluid in a slowly rotating rectangular basin. The equations of motion of such a problem with its boundary conditions are reduced to a system of nonlinear equations, which is to be solved by applying the shallow water approximation theory. Each unknown of the problem is expanded asymptotically in terms of the small parameterϵwhich generally depends on some intrinsic quantities of the problem of study. For each order of approximation, the nonlinear system of equations is presented successively. It is worthy to note that such a study has useful applications in the oceanography.


Sign in / Sign up

Export Citation Format

Share Document