scholarly journals Estimating Spatial Correlations under Man-Made Structures on Soft Soils

Author(s):  
T. de Gast ◽  
P. J. Vardon ◽  
M. A. Hicks
2001 ◽  
Vol 6 (2) ◽  
pp. 15-28 ◽  
Author(s):  
K. Dučinskas ◽  
J. Šaltytė

The problem of classification of the realisation of the stationary univariate Gaussian random field into one of two populations with different means and different factorised covariance matrices is considered. In such a case optimal classification rule in the sense of minimum probability of misclassification is associated with non-linear (quadratic) discriminant function. Unknown means and the covariance matrices of the feature vector components are estimated from spatially correlated training samples using the maximum likelihood approach and assuming spatial correlations to be known. Explicit formula of Bayes error rate and the first-order asymptotic expansion of the expected error rate associated with quadratic plug-in discriminant function are presented. A set of numerical calculations for the spherical spatial correlation function is performed and two different spatial sampling designs are compared.


2014 ◽  
Vol 4 (3) ◽  
pp. 15-24 ◽  
Author(s):  
O. Eswara Reddy ◽  
◽  
Madhav. M.R ◽  
Saibaba Reddy.E ◽  
Vidyaranya Bandi ◽  
...  
Keyword(s):  

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3848
Author(s):  
Wei Cui ◽  
Meng Yao ◽  
Yuanjie Hao ◽  
Ziwei Wang ◽  
Xin He ◽  
...  

Pixel-based semantic segmentation models fail to effectively express geographic objects and their topological relationships. Therefore, in semantic segmentation of remote sensing images, these models fail to avoid salt-and-pepper effects and cannot achieve high accuracy either. To solve these problems, object-based models such as graph neural networks (GNNs) are considered. However, traditional GNNs directly use similarity or spatial correlations between nodes to aggregate nodes’ information, which rely too much on the contextual information of the sample. The contextual information of the sample is often distorted, which results in a reduction in the node classification accuracy. To solve this problem, a knowledge and geo-object-based graph convolutional network (KGGCN) is proposed. The KGGCN uses superpixel blocks as nodes of the graph network and combines prior knowledge with spatial correlations during information aggregation. By incorporating the prior knowledge obtained from all samples of the study area, the receptive field of the node is extended from its sample context to the study area. Thus, the distortion of the sample context is overcome effectively. Experiments demonstrate that our model is improved by 3.7% compared with the baseline model named Cluster GCN and 4.1% compared with U-Net.


2021 ◽  
Vol 6 (2) ◽  
Author(s):  
Tarek N. Salem ◽  
Nagwa R. El-Sakhawy ◽  
Ahmed A. El-Latief
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document