An Adaptive Horizon Predictive Control Method for Autonomous Vehicles

Author(s):  
Wei Liu ◽  
Zhiheng Li ◽  
Li Li
Author(s):  
Yihuai Zhang ◽  
Baijun Shi ◽  
Xizhi Hu ◽  
Wandong Ai

Abstract Automated valet parking is a part of autonomous vehicles. Path tracking is a vital capability of autonomous vehicles. In the scenario of automatic valet parking, the existing control algorithm will produce a high tracking error and a high computational burden. This paper proposes a path-tracking algorithm based on model predictive control to adapt to low-speed driving. By using the model predictive control method and vehicle kinematics model, a path tracking controller is designed. Combining the dual algorithm to further optimize the solver, a new QPKWIK solver is proposed. The simulation results show that the solution time of the QPKWIK solver is 25% less than that of the QP solver, and the tracking error is reduced by up to 41% compared with the QP solver. In the parking lot, the tracking performance is tested under four common scenarios, and the experimental results show that this controller has better tracking performance.


1997 ◽  
Vol 36 (4) ◽  
pp. 135-142 ◽  
Author(s):  
Norihito Tambo ◽  
Yoshihiko Matsui ◽  
Ken-ichi Kurotani ◽  
Masakazu Kubota ◽  
Hirohide Akiyama ◽  
...  

A coagulation process for water purification plants mainly uses feedforward control based on raw water quality and empirical data and requires operator's help. We developed a new floc sensor for measuring floc size in a flush mixer to be used for floc control. A control system using model predictive control was developed on the floc size data. A series of experiments was performed to confirm controllability of settled water quality by controlling flush mixer floc size. An automatic control with feedback from the coagulation process was evaluated as practical and reliable. Finally this new control method was applied for actual plant and evaluated as practical.


Author(s):  
Xing Xu ◽  
Minglei Li ◽  
Feng Wang ◽  
Ju Xie ◽  
Xiaohan Wu ◽  
...  

A human-like trajectory could give a safe and comfortable feeling for the occupants in an autonomous vehicle especially in corners. The research of this paper focuses on planning a human-like trajectory along a section road on a test track using optimal control method that could reflect natural driving behaviour considering the sense of natural and comfortable for the passengers, which could improve the acceptability of driverless vehicles in the future. A mass point vehicle dynamic model is modelled in the curvilinear coordinate system, then an optimal trajectory is generated by using an optimal control method. The optimal control problem is formulated and then solved by using the Matlab tool GPOPS-II. Trials are carried out on a test track, and the tested data are collected and processed, then the trajectory data in different corners are obtained. Different TLCs calculations are derived and applied to different track sections. After that, the human driver’s trajectories and the optimal line are compared to see the correlation using TLC methods. The results show that the optimal trajectory shows a similar trend with human’s trajectories to some extent when driving through a corner although it is not so perfectly aligned with the tested trajectories, which could conform with people’s driving intuition and improve the occupants’ comfort when driving in a corner. This could improve the acceptability of AVs in the automotive market in the future. The driver tends to move to the outside of the lane gradually after passing the apex when driving in corners on the road with hard-lines on both sides.


Sign in / Sign up

Export Citation Format

Share Document