scholarly journals Onshore-Offshore Transport and Beach Profile Change

Author(s):  
Masataro Hattori ◽  
Ryoichi Kawamata
1982 ◽  
Vol 1 (18) ◽  
pp. 86 ◽  
Author(s):  
Takaaki Uda ◽  
Hiroshi Hashimoto

In order to analyze beach profile changes due to longshore and onshore-offshore sand transport, here is proposed a new model named the "empirical predictive model of beach profile change", which is an application of the empirical eigenfunction method. The analysis of the profile data obtained at the Misawa fishery port in Ogawarako Coast over five years from 1973 to 1977 indicates that profile changes due to longshore transport and to onshore-offshore transport can be separated. The model is shown to be effective in the analysis of profile changes near coastal structures.


1980 ◽  
Vol 1 (17) ◽  
pp. 71 ◽  
Author(s):  
Masataro Hattori ◽  
Ryoichi Kawamata

In this paper a model is presented to describe onshore-offshore sand transport in the surf zone. The model is based on the physical consideration that when the net transport attains a state of equilibrium, the power expended through gravitational force in suspending sand grains is balanced by that due to the uplifting force arising from the turbulence generated by breaking waves. Two important parameters controlling sand transport are the dimensionless fall-time parameter and bottom slope.


1986 ◽  
Vol 1 (20) ◽  
pp. 102 ◽  
Author(s):  
Nubuo Mimura ◽  
Yukinori Otsuka ◽  
Akira Watanabe

In the present study, effects of irregular waves on two-dimensional beach transformation and related phenomena were investigated through a series of laboratory experiments. Attempts were made to determine a representative wave of irregular wave trains which controlled individual phenomenon related to the two-dimensional beach profile change. It was found that the representative wave is different for each phenomenon. For the macroscopic beach profile change, it is the mean wave which represents whole incident waves. On the other hand, some of microscopic phenomena, such as initiation of sand movement and sand ripple formation, are controlled by larger waves in the wave train selectively, of which representative wave is the significant wave.


1982 ◽  
Vol 1 (18) ◽  
pp. 85 ◽  
Author(s):  
Ryoichi Kajima ◽  
Takao Shimizu ◽  
Kohki Maruyama ◽  
Shozo Saito

Two-dimensional beach profile changes were investigated with a newly constructed prototype-scale wave flume. The flume is 205 m long, 3.4 m wide and 6 m deep. Sand of two grain sizes was used in the experiments. Analysis of the results was made through use of the parameter C, introduced by Sunamura and Horikawa (1974) to classify beaches as either erosional and accretionary. Beach profile changes obtained in the flume were similar to those in the prototype (field). Net sand transport rate distributions were classified into five types, two of which do not seem to have been observed in laboratory (smallscale) experiments. A simple model describing the five types was developed for evaluating two-dimensional beach profile changes.


Author(s):  
Shingo Sasaoka ◽  
Kenji Noguchi ◽  
Yoshio Suwa ◽  
Hidetaka Kobayashi ◽  
Akira Watanabe ◽  
...  

2020 ◽  
Vol 03 (01n02) ◽  
pp. 2050002
Author(s):  
Ian Hardy ◽  
Zhenhua Huang ◽  
David Smith ◽  
Charles H. Fletcher

This case study reports results from field observations and numerical simulations of waves and morphological changes along a portion of Kaanapali Beach on West Maui, Hawaii, which is protected by a hard coral reef and experiences shoreline changes from season to season. The SWAN spectral wave model shows reasonable agreement with ADCP observations of wave-heights for the winter months. Simulated beach profile change over one-month time frame was able to reasonably capture the trend of beach face migration (accretion or erosion); the modeled shoreline also shows satisfactory agreement with beach survey data. This case study suggests that Delft3D is able to capture key features of sediment transport along a narrow beach protected by a fringing reef.


Author(s):  
Yen Kai ◽  
Ren Rushu ◽  
Wang Liang
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document