scholarly journals DESCRIPTION OF BEACH CHANGES USING AN EMPIRICAL PREDICTIVE MODEL OF BEACH PROFILE CHANGES

1982 ◽  
Vol 1 (18) ◽  
pp. 86 ◽  
Author(s):  
Takaaki Uda ◽  
Hiroshi Hashimoto

In order to analyze beach profile changes due to longshore and onshore-offshore sand transport, here is proposed a new model named the "empirical predictive model of beach profile change", which is an application of the empirical eigenfunction method. The analysis of the profile data obtained at the Misawa fishery port in Ogawarako Coast over five years from 1973 to 1977 indicates that profile changes due to longshore transport and to onshore-offshore transport can be separated. The model is shown to be effective in the analysis of profile changes near coastal structures.

1986 ◽  
Vol 1 (20) ◽  
pp. 87 ◽  
Author(s):  
T.W. Hsu ◽  
S.R. Liaw ◽  
S.K. Wang ◽  
S.H. Ou

A two-dimensional empirical eigenfunction model is proposed for the analysis and the prediction of beach profile change due to longshore and cross-shore sediment transports. Beach profile data from Redhill coast, Taiwan, measured every two months at 150 meters interval along the detached breakwaters are analyzed and the relative importance from two directions is investigated. Furthermore, by employing the method of Markov process and linear regression, a prediction model is formulated which takes into account the effect of breaking waves, bottom sediment and radiation stress of waves. This 2-D model is shown to be effective in the analysis and the prediction of beach changes near the coastal structures.


1982 ◽  
Vol 1 (18) ◽  
pp. 85 ◽  
Author(s):  
Ryoichi Kajima ◽  
Takao Shimizu ◽  
Kohki Maruyama ◽  
Shozo Saito

Two-dimensional beach profile changes were investigated with a newly constructed prototype-scale wave flume. The flume is 205 m long, 3.4 m wide and 6 m deep. Sand of two grain sizes was used in the experiments. Analysis of the results was made through use of the parameter C, introduced by Sunamura and Horikawa (1974) to classify beaches as either erosional and accretionary. Beach profile changes obtained in the flume were similar to those in the prototype (field). Net sand transport rate distributions were classified into five types, two of which do not seem to have been observed in laboratory (smallscale) experiments. A simple model describing the five types was developed for evaluating two-dimensional beach profile changes.


1980 ◽  
Vol 1 (17) ◽  
pp. 71 ◽  
Author(s):  
Masataro Hattori ◽  
Ryoichi Kawamata

In this paper a model is presented to describe onshore-offshore sand transport in the surf zone. The model is based on the physical consideration that when the net transport attains a state of equilibrium, the power expended through gravitational force in suspending sand grains is balanced by that due to the uplifting force arising from the turbulence generated by breaking waves. Two important parameters controlling sand transport are the dimensionless fall-time parameter and bottom slope.


2000 ◽  
Vol 16 ◽  
pp. 541-546
Author(s):  
Takaaki UDA ◽  
Ken-ichi KATOH ◽  
Takayuki KUCHI-ISHI ◽  
Naohiro AKAMATSU

1982 ◽  
Vol 1 (18) ◽  
pp. 84
Author(s):  
Hiroshi Hashimoto ◽  
Takaaki Uda

In order to investigate the response of beach profiles to incident waves, computations by the empirical eigenfunction analysis proposed by Winant et al. are performed. The analysis of the data obtained at Ajigaura Beach over three years from 1976 to 1979 indicates that beach profile changes due to longshore and onshore-offshore sediment transport are separable by the empirical eigenfunction method. The beach profile changes due to longshore sediment transport has a time lag of 12 weeks with respect to the change of wave direction at Ajigaura Beach. It was found theoretically that this time lag was due to the sand waves propagating in the longshore direction. Regarding as onshore-offshore sand transport, the second eigenfunction is associated with the beach changes due to onshore-offshore sand transport caused by the change of wave height.


2012 ◽  
Vol 1 (33) ◽  
pp. 17
Author(s):  
Kentaro Hayashi ◽  
Nobuhito Mori ◽  
Hajime Mase ◽  
Yoshiaki Kuriyama ◽  
Nobuhisa Kobayashi

The influences of climate change due to global warming have been estimated on not only sea level rise but also wave characteristics such as height or energy flux. In this study, the characteristics of medium and long term beach profile change is investigated based on the observed beach profile data at HORS for past 24 years and the relationship between the wave characteristics observed at Kashima port and the climate indexes. In order to estimate the influences of the medium and long term wave characteristic change, a theory is introduced based on equilibrium beach profile with wave parameter, which is theoretically based on sediment characteristic. Moreover, the validation of the theory is evaluated based on the observed beach profile data and wave data.


1982 ◽  
Vol 1 (18) ◽  
pp. 88 ◽  
Author(s):  
Tomoya Shibayama ◽  
Kiyoshi Horikawa

Laboratory and field investigations were performed in order to formulate a predictive model of two-dimensional beach profile change. The observed transport was classified into six types, and transport formulas were deduced for each type based on a microscale description of sediment movement caused by wave action. A numerical model of two-dimensional beach transformation was then developed. Beach profile changes calculated with the model were then compared with the laboratory results. The model was found to give reasonable results except in the vicinity of the wave plunging point. The sediment transport calculation is based on a sinusoidal velocity profile. The model appeares to give good results as long as the wave motion can be reasonably approximated by linear wave theory.


1988 ◽  
Vol 1 (21) ◽  
pp. 96 ◽  
Author(s):  
Magnus Larson ◽  
Nicholas C. Kraus ◽  
Tsuguo Sunamura

An empirically based engineering numerical model is presented for simulating beach profile change in the surf zone produced by waveinduced cross-shore sand transport. The model simulates the dynamics of macroscale profile change, such as the growth and movement of berms and breakpoint bars. Model development was founded on two data sets from large wave tank experiments consisting of 42 cases with different incident wave conditions, median grain size, and initial beach shape. Model predictions are tested with field data, and reasonable agreement is found.


1980 ◽  
Vol 1 (17) ◽  
pp. 69
Author(s):  
Jan Van de Graaff ◽  
Wiel M.K. Tilmans

In coastal engineering practice frequently a distinction is made between two different modes of sand transport: - longshore transport - onshore-offshore transport From a theoretical point of view the longshore transport phenomenon is not as complicated as the onshore-offshore phenomenon. In the longshore mode of transport, the variations in time (wave period scale) are less important since the current velocity component in the longshore direction is nearly constant in time. In the onshoreoffshore direction both the time-variations of (orbital) velocities and sediment concentrations have to be considered in order to be able to compute the resulting net sediment transport. Since our quantitative knowledge of the time variations of the concentration is extremely poor at this moment, realistic calculations of the onshore-offshore transport, based on the actual physics involved, cannot be made. In many practical coastal engineering applications the onshore-offshore transports play an important role, however, and therefore a reliable description is urgently needed. Swart (1974;1976) presented an experimentally based computing method. The Coastal Engineering Group of the Delft University of Technology has been studying the onshoreoffshore transport phenomenon since 1968. Since the beginning of the investigation a rather experimental research method has been used also since the measuring devices lacked to measure real concentrations. The outcome of the present investigation, however, is rather surprising in some aspects. Bijker, Van Hijum and Vellinga (1976) reported on some preliminary results.


Sign in / Sign up

Export Citation Format

Share Document