Closure to “Runoff Curve Numbers form Partial Area Watersheds”

1981 ◽  
Vol 107 (2) ◽  
pp. 241-242
Author(s):  
Richard H. Hawkins
Keyword(s):  
2005 ◽  
Vol 173 (2) ◽  
pp. 425-428 ◽  
Author(s):  
PEDER GJENGSTØ ◽  
ELISABETH PAUS ◽  
OLE JOHAN HALVORSEN ◽  
JOHAN EIDE ◽  
LARS ANDREAS AKSLEN ◽  
...  

2020 ◽  
Vol 71 (12) ◽  
pp. 1686
Author(s):  
Chen Chen ◽  
Nannan Zhang ◽  
Zhe Liu ◽  
Shuqing An ◽  
Dehua Zhao

Intermittent aeration (IA) has been widely used in constructed wetlands (CWs) because it is economical and results in high nitrogen removal efficiency (RE). The aim of this study was to identify whether IA (4hday–1; the recommended frequency according to previous studies) in a partial area (PIA) can improve nitrogen RE compared with IA applied throughout the CW (TIA). Three types of laboratory-scale vertical flow CWs were constructed: PIA, TIA and non-aerated (NA). PIA achieved a higher RE of total nitrogen than TIA and NA (mean RE 60.6 v. 45.2 and 37.4% respectively). In the PIA, the ammonia mono-oxygenase subunit A (amoA) gene was abundant in aerated areas, whereas the nitrate reductase gene narG and nitrite reductase genes nirK and nirS were abundant in anaerobic areas. The results of this study suggest that PIA is an effective strategy for nitrogen removal when applying aeration in CWs because it preserves a constant anaerobic area for denitrification.


1985 ◽  
Vol 81 (3-4) ◽  
pp. 211-251 ◽  
Author(s):  
A.A. Van de Griend ◽  
E.T. Engman
Keyword(s):  

Soil Science ◽  
1983 ◽  
Vol 135 (5) ◽  
pp. 282-295 ◽  
Author(s):  
YOSHISUKE NAKANO ◽  
TOSIO CHO ◽  
DANIEL HILLEL
Keyword(s):  

2020 ◽  
Author(s):  
Hanoch Lavee

<p>In humid temperate areas, where infiltration rate and soil moisture are high the hillslopes are draining mainly via shallow subsurface flow. Overland flow is seldom generated on the very low parts of hillslopes when the soil is saturated up to the surface. This spatial pattern is known as “partial area contribution”.</p><p>In contrary, in arid areas, where the soil moisture is hygroscopic most of the time, overland flow is generated not because of soil saturation conditions but only when rainfall intensity is higher than the infiltration rate.  </p><p>Nevertheless, we found a “partial area contribution” pattern in several arid and semi-arid areas due other controlling factors:</p><ol><li>In eastern Sinai, under rainfall simulation experiments on scree slopes, due to high spatial differences in the soil texture, runoff coefficient in the gullies was almost 100% while in the very permeable interfluves runoff wasn’t generated at all. Overland flow was generated, therefore, only in the gullies (Lavee ,1973; Yair & Lavee ,1976).</li> <li>In an instrumented experimental watershed in the Northern Negev, the specific overland flow yield from long plots ,extending from the divide to the slope base (around 60m in length), was consistently lower than the combined specific overland flow yield from the adjacent two short plots (around 30m in length), draining the upper and the lower sections of the hillslope, respectively. This means that the overland flow is discontinuous and at least part of the overland flow that was generated at the upper part of the hillslope infiltrated, in most overland flow events, into the soil, before reaching the slope base. In other words, only the lower part of the hillslope contributes, in most cases, overland flow to the channel. Such overland flow discontinuity is controlled by: 1. The typical short duration of rain showers in arid areas. As more than 80% of the rain showers last for less than 15 minutes, the total flow duration is usually shorter than the concentration time. 2. The spatial distribution of infiltration rate. In this case it was mainly the relatively high infiltration rate in the colluvial cover at the lower part of the hillslopes in part of the study area that absorbed large amount of the water flowing from the upper part of the hillslopes (Lavee, 1982; Yair & Lavee, 1985; Lavee & Yair, 1990).</li> <li>In an experimental project along a climatological transect, running from the Mediterranean climate near Jerusalem to the extreme arid climate near the Dead Sea, the main reason for the overland flow discontinuity, especially in the semi-arid area, was the mosaic pattern of “source patches”, on which overland flow was generated, and “sink patches”, in which at least part of the direct rain and the incoming overland flow infiltrated. This pattern is produced by different processes, mainly via the effect of vegetation, but also due to the effects of micro-topography, big stones, especially if they are partly embedded in the soil, and livestock grazing (Lavee & Poesen, 1991; Lavee et al., 1998; Stavi et al., 2008).</li> </ol>


2013 ◽  
Vol 32 (20) ◽  
pp. 3449-3458 ◽  
Author(s):  
Hua Ma ◽  
Andriy I. Bandos ◽  
Howard E. Rockette ◽  
David Gur

Sign in / Sign up

Export Citation Format

Share Document