Closure to “Risk Evaluation in Sewage Treatment Plant Design”

1968 ◽  
Vol 94 (1) ◽  
pp. 178-179
Author(s):  
Daniel P. Loucks
1992 ◽  
Vol 25 (4-5) ◽  
pp. 331-337 ◽  
Author(s):  
G. Kugel ◽  
E. Zingler ◽  
G. Hellfeier

The 100 000 PE Goch STP is to be upgraded by implementing a 2-stage activated sludge process with integrated nitrification and denitrification to treat strong sewage water dominated by potato processing wastes. Thermophilic (75 °C) acidification reactors will be added to mesophilic (38 °C) digesters (total hydraulic retention time about 13 days).


2018 ◽  
Vol 7 (4.20) ◽  
pp. 310
Author(s):  
Ali Hadi Ghawi

In this study, a sewage treatment plant was designed for the city of Al-Nasiriyah in Dhi Qar governorate in southern Iraq serving 316083 inhabitants. The resulting treated water is suitable for agricultural irrigation and can be discharged to the Euphrates River when needed by adding nitrogen and phosphorus removal units to the wastewater treatment plant. The obtained plant design has been verified and optimized by implementing the proposed plant layout in the GPS-X 5.0 modeling and simulation software (Hydromantis). Where the results of the design showed that the total phosphorus flow is higher than the desired limit of 2 mg / L, due to the excessive release during anaerobic digestion. Control of phosphorus concentration can be controlled by adding chemicals (iron or aluminum salts) in different parts of the wastewater treatment plant. In this case, two different control strategies can be implemented: adding aluminum doses in both water and sludge lines (at Chem1 and Chem2 points) or adding aluminum doses in the water line only (at point Chem2). The second strategy showed that it is the most efficient in controlling the concentration of phosphorus and nitrogen produced, which meets the limits of the Iraqi standard of water used in irrigation.  


2020 ◽  
Vol 15 (2) ◽  
pp. 142-151
Author(s):  
Peter Lukac ◽  
Lubos Jurik

Abstract:Phosphorus is a major substance that is needed especially for agricultural production or for the industry. At the same time it is an important component of wastewater. At present, the waste management priority is recycling and this requirement is also transferred to wastewater treatment plants. Substances in wastewater can be recovered and utilized. In Europe (in Germany and Austria already legally binding), access to phosphorus-containing sewage treatment is changing. This paper dealt with the issue of phosphorus on the sewage treatment plant in Nitra. There are several industrial areas in Nitra where record major producers in phosphorus production in sewage. The new wastewater treatment plant is built as a mechanicalbiological wastewater treatment plant with simultaneous nitrification and denitrification, sludge regeneration, an anaerobic zone for biological phosphorus removal at the beginning of the process and chemical phosphorus precipitation. The sludge management is anaerobic sludge stabilization with heating and mechanical dewatering of stabilized sludge and gas management. The aim of the work was to document the phosphorus balance in all parts of the wastewater treatment plant - from the inflow of raw water to the outflow of purified water and the production of excess sludge. Balancing quantities in the wastewater treatment plant treatment processes provide information where efficient phosphorus recovery could be possible. The mean daily value of P tot is approximately 122.3 kg/day of these two sources. The mean daily value of P tot is approximately 122.3 kg/day of these two sources. There are also two outflows - drainage of cleaned water to the recipient - the river Nitra - 9.9 kg Ptot/day and Ptot content in sewage sludge - about 120.3 kg Ptot/day - total 130.2 kg Ptot/day.


2008 ◽  
Vol 37 (2) ◽  
Author(s):  
Maciej Walczak

Changes of microbial indices of water quality in the Vistula and Brda rivers as a result of sewage treatment plant operationThis paper reports the results of studies of microbiological changes in the water quality of the Vistula and Brda rivers after the opening of sewage treatment plants in Bydgoszcz. The study involved determining the microbiological parameters of water quality. Based on the results obtained, it was found that the quality of the water in both rivers had improved decidedly after the opening of the plants, although an increased number of individual groups of microorganisms was found at the treated sewage outlet from one of the plants.


2000 ◽  
Vol 36 (4) ◽  
pp. 161-171
Author(s):  
KENITSU KONNO ◽  
NAOKI ABE ◽  
YOSHIRO SATO ◽  
KOJI AKAMATSU ◽  
MAKOTO ABE ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document