String Stability Analysis of Connected Vehicular Systems Based on Car-Following Model

2021 ◽  
Vol 147 (8) ◽  
pp. 04021038
Author(s):  
Shuqing Li ◽  
Yanyan Qin ◽  
Zhengbing He
IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Mingfei Mu ◽  
Junjie Zhang ◽  
Changmiao Wang ◽  
Jun Zhang ◽  
Can Yang

2016 ◽  
Vol 30 (18) ◽  
pp. 1650243 ◽  
Author(s):  
Guanghan Peng ◽  
Li Qing

In this paper, a new car-following model is proposed by considering the drivers’ aggressive characteristics. The stable condition and the modified Korteweg-de Vries (mKdV) equation are obtained by the linear stability analysis and nonlinear analysis, which show that the drivers’ aggressive characteristics can improve the stability of traffic flow. Furthermore, the numerical results show that the drivers’ aggressive characteristics increase the stable region of traffic flow and can reproduce the evolution and propagation of small perturbation.


2013 ◽  
Vol 74 (1-2) ◽  
pp. 335-343 ◽  
Author(s):  
Yongfu Li ◽  
Hao Zhu ◽  
Min Cen ◽  
Yinguo Li ◽  
Rui Li ◽  
...  

2019 ◽  
Vol 33 (06) ◽  
pp. 1950025 ◽  
Author(s):  
Caleb Ronald Munigety

Modeling the dynamics of a traffic system involves using the principles of both physical and social sciences since it is composed of vehicles as well as drivers. A novel car-following model is proposed in this paper by incorporating the socio-psychological aspects of drivers into the dynamics of a purely physics-based spring–mass–damper mechanical system to represent the driver–vehicle longitudinal movements in a traffic stream. The crux of this model is that a traffic system can be viewed as various masses interacting with each other by means of springs and dampers attached between them. While the spring and damping constants represent the driver behavioral parameters, the mass component represents the vehicle characteristics. The proposed model when tested for its ability to capture the traffic system dynamics both at micro, driver, and macro, stream, levels behaved pragmatically. The stability analysis carried out using perturbation method also revealed that the proposed model is both locally and asymptotically stable.


Sign in / Sign up

Export Citation Format

Share Document