Refraction of Continuous Ocean Wave Spectra

1969 ◽  
Vol 95 (4) ◽  
pp. 437-448
Author(s):  
Thorbjorn Karlsson
Keyword(s):  
1982 ◽  
Author(s):  
F. Jackson ◽  
W. Walton ◽  
P. Baker
Keyword(s):  

1963 ◽  
Vol 53 (1) ◽  
pp. 27-37
Author(s):  
R. A. Haubrich ◽  
W. H. Munk ◽  
F. E. Snodgrass

Abstract Spectra of seismic and ocean wave recordings near San Diego, California, show closely related features. The wave spectra consist of a sharp peak whose frequency, f(t), increases linearly with time and consistent with the expected dispersive behaviour from a source at 6150 nautical miles (presumably a storm in the Ross Sea). The seismic spectra show peaks at f(t) and at 2 f(t); the double frequency peak contains 100 times the energy of the peak at the primary frequency. A comparison between the peak frequencies and band widths of the seismic and ocean wave spectra, and an estimate of the direction and beam width of the seismic radiation, leads to the following conclusions: that the microseismic generation area is predominantly local, being confined to a distance of 100 miles up or down the coast. For the primary frequencies the generative strip is presumably confined to shallow water; for the double frequencies it extends 200 miles seaward.


1976 ◽  
Vol 1 (15) ◽  
pp. 6
Author(s):  
Davidson T. Chen ◽  
Benjamin S. Yaplee ◽  
Donald L. Hammond ◽  
Paul Bey

The ability to measure the wave spectra in the open ocean from a moving vessel has met with varying degrees of success. Each sensor to date has suffered in its performance due to environmental conditions or due to its physical placement aboard the vessel for measuring the unperturbed sea. This paper will discuss the utilization of a microwave sensor on a moving vessel for measuring the open ocean wave spectra. Employing microwaves, some of the limitations of other sensors are not experienced. Tucker [1] developed the Tuckermeter for measuring the wave spectra from a moving ship by sensing changes in water pressure due to surface wave conditions. The Tuckermeter is placed below the water line and thus requires calibration for each wave frequency, ship speed, and depth. Since the sensor operates on pressure, it performs as a low pass filter and will not sense the higher frequencies. A microwave shipboard wave height radar sensor for measuring the ocean wave spectra was developed by the Naval Research Laboratory (NRL) and was installed on the S.S. McLean in February 1975 and its performance, design, and analysis of data for one data run will be discussed.


Author(s):  
Thomas B. Johannessen

The present paper addresses the challenges associated with applying weakly nonlinear mode-coupled solutions for wave interaction problems to irregular waves with continuous spectra. Unlike the linear solution, the nonlinear solutions will be strongly dependent on cut-off frequency for problems such as the wave elevation itself or loads on a slender cylinder used together with typical ocean wave spectra. It is found that the divergence of the solutions with respect to the cut-off frequency is related to the nonlinear interaction between waves with very different frequencies. This is, in turn, linked to a long standing discussion about the ability of mode-coupled methods to describe the modulation of a short wave due to the presence of a long wave. In cases where nonlinear properties associated with a measured or assumed history of the surface elevation is sought, it is not necessary to calculate accurately the nonlinear evolution of the wave field in space and time. For such cases it is shown that results which are independent of frequency cut-off may be obtained by introducing a maximum bandwidth in frequency between waves which are allowed to interact. It is shown that a suitable bandwidth can be found by applying this method to the problem of back-calculating a linear wave profile from a measured wave profile. In order to verify that this choice of bandwidth is suitable for second and third order terms, nonlinear loads on a slender vertical cylinder are calculated using the FNV method of Faltinsen, Newman, and Vinje (1995, “Nonlinear Wave Loads on a Slender, Vertical Cylinder,” J. Fluid Mech., 289, pp. 179–198). The method is used to compare loads calculated based on measured surface elevations with measurements of loads on two cylinders with different diameters. This comparison indicates that the bandwidth formulation is suitable and that the FNV solution gives a reasonable estimate of loading on slender cylinders. There are, however, loading mechanisms that the FNV solution does not describe, notably the secondary loading cycle first observed by Grue et al. (1993, Higher Harmonic Wave Exciting Forces on a Vertical Cylinder, Institute of Mathematics, University of Oslo, Preprint No. 2). Finally, the method is employed to calculate the ringing response on a large concrete gravity base platform. The base moment response is calculated using the FNV loading on the shafts and linear loads from a standard diffraction code, together with a structural finite element beam model. Comparison with results from a recent model testing campaign shows a remarkable agreement between the present method and the measured response.


2013 ◽  
Vol 33 ◽  
pp. 95-102 ◽  
Author(s):  
Pierre Ailliot ◽  
Christophe Maisondieu ◽  
Valérie Monbet
Keyword(s):  

1988 ◽  
Vol 93 (C12) ◽  
pp. 15367 ◽  
Author(s):  
Toshio Iguchi ◽  
Hideyuki Inomata ◽  
Harunobu Masuko ◽  
Nobuyoshi Fugono

1972 ◽  
Vol 1 (13) ◽  
pp. 10
Author(s):  
Leon E. Borgman

The random nature of ocean wave records introduces statistical variability into the wave spectrum estimates based on these records. This may cause inaccuracy in subsequent calculations such as the prediction of the primary wave direction or the estimation of structural response. Confidence intervals on such estimates are needed to evaluate whether adequate estimate accuracy has been obtained. The chi-squared confidence interval commonly used for wave spectra is based on the assumption of a Gaussian sea surface. Its applicability for hurrican size waves has been open for question. Therefore, after a brief outline of the relevant statistical relations basic to the chi-squared procedure, wave data from Hurrican Carla is empirically analyzed and compared with the theoretical conclusions. A simulation procedure is used to proceed from the data to probability interval statements. A comparison of these with the correponding chi-squared statements shows the chi-squared relations to be fairly reasonable approximations for spectral estimates averaged over bands of at least eight values. The empirical simulation procedure can be extended to subsequent calculations based on the spectral estimates while the chi-square method encounters difficulty for such problems.


Sign in / Sign up

Export Citation Format

Share Document