Efficiency of encounter-controlled reaction between diffusing reactants in a finite lattice

2000 ◽  
Vol 113 (18) ◽  
pp. 8168-8174 ◽  
Author(s):  
John J. Kozak ◽  
C. Nicolis ◽  
G. Nicolis
Keyword(s):  
1997 ◽  
Vol 84 (1) ◽  
pp. 176-178
Author(s):  
Frank O'Brien

The author's population density index ( PDI) model is extended to three-dimensional distributions. A derived formula is presented that allows for the calculation of the lower and upper bounds of density in three-dimensional space for any finite lattice.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Georg Bergner ◽  
David Schaich

Abstract We investigate the lattice regularization of $$ \mathcal{N} $$ N = 4 supersymmetric Yang-Mills theory, by stochastically computing the eigenvalue mode number of the fermion operator. This provides important insight into the non-perturbative renormalization group flow of the lattice theory, through the definition of a scale-dependent effective mass anomalous dimension. While this anomalous dimension is expected to vanish in the conformal continuum theory, the finite lattice volume and lattice spacing generically lead to non-zero values, which we use to study the approach to the continuum limit. Our numerical results, comparing multiple lattice volumes, ’t Hooft couplings, and numbers of colors, confirm convergence towards the expected continuum result, while quantifying the increasing significance of lattice artifacts at larger couplings.


1992 ◽  
Vol 46 (4) ◽  
pp. 1643-1657 ◽  
Author(s):  
J. L. deLyra ◽  
S. K. Foong ◽  
T. E. Gallivan

1987 ◽  
Vol 101 (2) ◽  
pp. 221-231 ◽  
Author(s):  
Joseph P. S. Kung

AbstractLet and ℳ be subsets of a finite lattice L. is said to be concordant with ℳ if, for every element x in L, either x is in ℳ or there exists an element x+ such that (CS1) the Möbius function μ(x, x+) ≠ 0 and (CS2) for every element j in , x ∨ j ≠ x+. We prove that if is concordant with ℳ, then the incidence matrix I(ℳ | ) has maximum possible rank ||, and hence there exists an injection σ: → ℳ such that σ(j) ≥ j for all j in . Using this, we derive several rank and covering inequalities in finite lattices. Among the results are generalizations of the Dowling-Wilson inequalities and Dilworth's covering theorem to semimodular lattices, and a refinement of Dilworth's covering theorem for modular lattices.


2019 ◽  
Vol 6 (6) ◽  
Author(s):  
Marko Medenjak ◽  
Vladislav Popkov ◽  
Tomaz Prosen ◽  
Eric Ragoucy ◽  
Matthieu Vanicat

In this paper we study the statistical properties of a reversible cellular automaton in two out-of-equilibrium settings. In the first part we consider two instances of the initial value problem, corresponding to the inhomogeneous quench and the local quench. Our main result is an exact matrix product expression of the time evolution of the probability distribution, which we use to determine the time evolution of the density profiles analytically. In the second part we study the model on a finite lattice coupled with stochastic boundaries. Once again we derive an exact matrix product expression of the stationary distribution, as well as the particle current and density profiles in the stationary state. The exact expressions reveal the existence of different phases with either ballistic or diffusive transport depending on the boundary parameters.


2019 ◽  
Vol 523 ◽  
pp. 15-33
Author(s):  
Abdolnaser Bahlekeh ◽  
Fahimeh Sadat Fotouhi ◽  
Shokrollah Salarian
Keyword(s):  

1970 ◽  
Vol 22 (3) ◽  
pp. 569-581 ◽  
Author(s):  
S. K. Thomason

In this paper we shall prove that every finite lattice is isomorphic to a sublattice of the degrees of unsolvability, and that every one of a certain class of finite lattices is isomorphic to an initial segment of degrees.Acknowledgment. I am grateful to Ralph McKenzie for his assistance in matters of lattice theory.1. Representation of lattices. The equivalence lattice of the set S consists of all equivalence relations on S, ordered by setting θ ≦ θ’ if for all a and b in S, a θ b ⇒ a θ’ b. The least upper bound and greatest lower bound in are given by the ⋃ and ⋂ operations:


Sign in / Sign up

Export Citation Format

Share Document