Effects of ion irradiation on epitaxial Cu/Ni/Cu(001) with perpendicular magnetic anisotropy

2002 ◽  
Vol 81 (21) ◽  
pp. 4017-4019 ◽  
Author(s):  
T. G. Kim ◽  
Y. H. Shin ◽  
J. H. Song ◽  
M. C. Sung ◽  
I. S. Kim ◽  
...  
2002 ◽  
Vol 8 (4) ◽  
pp. 319-332 ◽  
Author(s):  
G.J. Kusinski ◽  
G. Thomas

The microstructure of Co/Pt multilayers with large perpendicular magnetic anisotropy (PMA) was investigated before and after energetic ion irradiation. No pronounced microstructural changes were detected at ion doses sufficient to completely reduce the PMA and cause a spin reorientation transition to in-plane. Ion-induced displacement of Co and Pt atoms near Co/Pt interfaces lead to local “roughening” and Co layer strain relaxation, reducing the PMA. The magnetic domain confinement induced by ion irradiation and magnetic patterning by selective ion irradiation were also investigated.


2019 ◽  
Vol 31 (18) ◽  
pp. 185801 ◽  
Author(s):  
M M Jakubowski ◽  
M O Liedke ◽  
M Butterling ◽  
E Dynowska ◽  
I Sveklo ◽  
...  

2016 ◽  
Vol 94 (17) ◽  
Author(s):  
M. Sakamaki ◽  
K. Amemiya ◽  
I. Sveklo ◽  
P. Mazalski ◽  
M. O. Liedke ◽  
...  

2017 ◽  
Vol 132 (2) ◽  
pp. 206-209
Author(s):  
J. Kasiuk ◽  
J. Fedotova ◽  
J. Przewoźnik ◽  
C. Kapusta ◽  
V. Skuratov ◽  
...  

Author(s):  
A.E.M. De Veirman ◽  
F.J.G. Hakkens ◽  
W.M.J. Coene ◽  
F.J.A. den Broeder

There is currently great interest in magnetic multilayer (ML) thin films (see e.g.), because they display some interesting magnetic properties. Co/Pd and Co/Au ML systems exhibit perpendicular magnetic anisotropy below certain Co layer thicknesses, which makes them candidates for applications in the field of magneto-optical recording. It has been found that the magnetic anisotropy of a particular system strongly depends on the preparation method (vapour deposition, sputtering, ion beam sputtering) as well as on the substrate, underlayer and deposition temperature. In order to get a better understanding of the correlation between microstructure and properties a thorough cross-sectional transmission electron microscopy (XTEM) study of vapour deposited Co/Pd and Co/Au (111) MLs was undertaken (for more detailed results see ref.).The Co/Pd films (with fixed Pd thickness of 2.2 nm) were deposited on mica substrates at substrate temperatures Ts of 20°C and 200°C, after prior deposition of a 100 nm Pd underlayer at 450°C.


2003 ◽  
Vol 777 ◽  
Author(s):  
T. Devolder ◽  
M. Belmeguenai ◽  
C. Chappert ◽  
H. Bernas ◽  
Y. Suzuki

AbstractGlobal Helium ion irradiation can tune the magnetic properties of thin films, notably their magneto-crystalline anisotropy. Helium ion irradiation through nanofabricated masks can been used to produce sub-micron planar magnetic nanostructures of various types. Among these, perpendicularly magnetized dots in a matrix of weaker magnetic anisotropy are of special interest because their quasi-static magnetization reversal is nucleation-free and proceeds by a very specific domain wall injection from the magnetically “soft” matrix, which acts as a domain wall reservoir for the “hard” dot. This guarantees a remarkably weak coercivity dispersion. This new type of irradiation-fabricated magnetic device can also be designed to achieve high magnetic switching speeds, typically below 100 ps at a moderate applied field cost. The speed is obtained through the use of a very high effective magnetic field, and high resulting precession frequencies. During magnetization reversal, the effective field incorporates a significant exchange field, storing energy in the form of a domain wall surrounding a high magnetic anisotropy nanostructure's region of interest. The exchange field accelerates the reversal and lowers the cost in reversal field. Promising applications to magnetic storage are anticipated.


2021 ◽  
pp. 1-1
Author(s):  
I. Benguettat-El Mokhtari ◽  
Y. Roussigne ◽  
S. M. Cherif ◽  
S. Auffret ◽  
C. Baraduc ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document