TEM Study of Co/Pd and Co/Au Multilayers

Author(s):  
A.E.M. De Veirman ◽  
F.J.G. Hakkens ◽  
W.M.J. Coene ◽  
F.J.A. den Broeder

There is currently great interest in magnetic multilayer (ML) thin films (see e.g.), because they display some interesting magnetic properties. Co/Pd and Co/Au ML systems exhibit perpendicular magnetic anisotropy below certain Co layer thicknesses, which makes them candidates for applications in the field of magneto-optical recording. It has been found that the magnetic anisotropy of a particular system strongly depends on the preparation method (vapour deposition, sputtering, ion beam sputtering) as well as on the substrate, underlayer and deposition temperature. In order to get a better understanding of the correlation between microstructure and properties a thorough cross-sectional transmission electron microscopy (XTEM) study of vapour deposited Co/Pd and Co/Au (111) MLs was undertaken (for more detailed results see ref.).The Co/Pd films (with fixed Pd thickness of 2.2 nm) were deposited on mica substrates at substrate temperatures Ts of 20°C and 200°C, after prior deposition of a 100 nm Pd underlayer at 450°C.

2015 ◽  
Vol 233-234 ◽  
pp. 467-470 ◽  
Author(s):  
Haider Al Azzawi ◽  
Yuri Kalinin ◽  
Alexander Sitnikov ◽  
Oksana Tarasova

New {[({[(Co41Fe39B20)X(SiO2)100X]/[(Co41Fe39B20)X(SiO2)100х+O2]}178 and {[(Co45Fe45Zr10)X(Al2O3)100-X]/[(Co45Fe45Zr10)X(Al2O3)100-X+O2]}300 multilayer heterogeneous structure has been obtained by ion-beam sputtering method. Magnetostatic and magnetodynamic properties and the structure of the nanocomposites have been investigated. It was shown that, the oxidized interlayer composite adding lead to suppression of perpendicular magnetic anisotropy component, and a change in the magnetic structure of the composites, which determines the change in the frequency dependence of the real (μ/) and imaginary (μ//) parts of the complex permeability.


1985 ◽  
Vol 54 ◽  
Author(s):  
G. J. Campisi ◽  
H. B. DIETRICH ◽  
M. Delfino ◽  
D. K. Sadana

ABSTRACTSeveral silicon wafers were implanted with 58Ni+ at an energy of 170 keV and a current density of 12 μA cm-2 to doses between 5 × 1015 and 1.8 × 1018 ions cm-2. The substrates were phosphorus doped n-type <100> Czochralski grown silicon wafers. The wafers were water cooled during implantation and the surface temperatures was monitored with an infrared pyrometer and controlled to < 70°C. Samples were subsequently furnace annealed at 900°C for 30 min in nitrogen. The as-implanted and annealed samples were analyzed using cross-sectional transmission electron microscopy (XTEM), Rutherford backscattering (RBS) spectroscopy, spreading resistance depth profiling (SRP), and scanning electron microscopy (SEM). Micro-crystallites of NiSi2 (2–5nm) buried within an amorphous matrix formed during the 1.5 × 1017 ions cm-2 dose implantation. For higher doses above 3 × 1017 Ni+ cm-2, ion beam sputtering occurred. After annealing, rapid diffusion of nickel and solid-phase recrystallization of the amorphous regions occurred.


1996 ◽  
Vol 441 ◽  
Author(s):  
Tai D. Nguyen ◽  
Alison Chaiken ◽  
Troy W. Barbee

AbstractMicrostructural development of Fe and Cu in Cu/Fe multilayers of layer thickness 1.5–10 nm prepared on Si, Ge, and MgO substrates by ion beam sputtering has been studied using x-ray diffraction and cross-sectional transmission electron microscopy (TEM). High-angle x-ray results show an fcc Cu structure and a distorted bcc structure in the Fe layers at 5 nm-layer-thickness and smaller, and bcc Fe (110) and fcc Cu (111) peaks in the 10 nm-layer-thickness samples. Lowangle x-ray diffraction indicates that the layers in the samples grown on MgO substrates have a more uniform and smooth layered structure than the multilayers grown on Si and Ge substrates, which results from larger grains in the MgO substrate samples for the same layer thickness. Relationships among growth, microstructure, and interfaces with layer thickness are discussed.


2003 ◽  
Vol 775 ◽  
Author(s):  
Suk-Ho Choi ◽  
Jun Sung Bae ◽  
Kyung Jung Kim ◽  
Dae Won Moon

AbstractSi/SiO2 multilayers (MLs) have been prepared under different deposition temperatures (TS) by ion beam sputtering. The annealing at 1200°C leads to the formation of Si nanocrystals in the Si layer of MLs. The high resolution transmission electron microscopy images clearly demonstrate the existence of Si nanocrystals, which exhibit photoluminescence (PL) in the visible range when TS is ≥ 300°C. This is attributed to well-separation of nanocrystals in the higher-TS samples, which is thought to be a major cause for reducing non-radiative recombination in the interface between Si nanocrystal and surface oxide. The visible PL spectra are enhanced in its intensity and are shifted to higher energy by increasing TS. These PL behaviours are consistent with the quantum confinement effect of Si nanocrystals.


2010 ◽  
Vol 63 ◽  
pp. 392-395
Author(s):  
Yoshifumi Aoi ◽  
Satoru Furuhata ◽  
Hiromi Nakano

ZrN/TiN multi-layers were synthesized by ion beam sputtering technique. Microstructure and mechanical property of the ZrN/TiN multi-layers were characterized and the relationships between microstructure and hardness of the ZrN/TiN multi-layers with various bilayer thicknesses and thickness ratios were investigated. The microstructure of multi-layers have been investigated using transmission electron microscope (TEM) and X-ray diffraction (XRD).


1985 ◽  
Vol 47 ◽  
Author(s):  
H. Windischmann ◽  
J. M. Cavese ◽  
R. W. Collins ◽  
R. D. Harris ◽  
J. Gonzalez-Hernandez

ABSTRACTThe crystallinity for silicon and germanium films deposited by ion beam sputtering (IBS) as a function of substrate temperatures was determined using Raman spectroscopy, spectroscopic ellipsometry, electrical conductivity and x-ray diffraction measurements. The results show that IBS silicon crystallizes between 300–350°C while germanium crystallizes between 20–200°C. Reasonably good agreement is obtained among the four distinctively different characterization techniques in identifying the onset of crystallinity. A direct relationship is observed between the substrate temperature required for crystallization and the log of the operating pressure for various deposition techniques. Energetic particle stimulation during film growth appears to reduce the crystallization temperature at a given operating pressure. Raman data show that the crystallization temperature depends on the deposition rate. A graded structure is observed in films deposited above 300°C, probably due to oxygen contamination.


Sign in / Sign up

Export Citation Format

Share Document