scholarly journals The two-phase model for calculating thermodynamic properties of liquids from molecular dynamics: Validation for the phase diagram of Lennard-Jones fluids

2003 ◽  
Vol 119 (22) ◽  
pp. 11792-11805 ◽  
Author(s):  
Shiang-Tai Lin ◽  
Mario Blanco ◽  
William A. Goddard
2019 ◽  
Vol 9 (12) ◽  
pp. 2439 ◽  
Author(s):  
Yechan Noh ◽  
Truong Vo ◽  
BoHung Kim

At the molecular scale, the definition of solid/fluid boundary is ambiguous since its defining precision is comparable to the size of the electron orbitals. It is important to figure out the sub-atomic-level solid/fluid boundary as the definition of the solid/fluid interface is related to estimating various properties such as slip length, Kapitza resistance, confined volume, thermodynamic properties, and material properties. In this work, molecular dynamics (MD) simulations were conducted to show the effects of the solid/fluid boundary on estimating thermodynamic properties. Our results reveal that the different definitions of solid/fluid boundary can cause a considerable impact on quantitative analysis and even qualitative analysis of a nanoscale system. The solid/fluid boundary for Lennard-Jones atoms is determined within sub-atomic precision via heat transfer MD simulations and microscopic heat flux relation. The result shows that solid/fluid boundary is slightly shifted to the fluid regime as the temperature increase. We suggested a mathematical expression of solid/fluid boundary of LJ atom that is theoretically estimated by ignoring the thermal vibration. The results presented in this work are expected to improve the accuracy of analyzing nanoscale phenomena as well as the continuum-based models for nanoscale heat and mass transport.


2020 ◽  
Vol 9 (6) ◽  
Author(s):  
Thibaud Maimbourg ◽  
Jeppe Dyre ◽  
Lorenzo Costigliola

Liquids displaying strong virial-potential energy correlations conform to an approximate density scaling of their structural and dynamical observables. This scaling property does not extend to the entire phase diagram, in general. The validity of the scaling can be quantified by a correlation coefficient. In this work a simple scheme to predict the correlation coefficient and the density-scaling exponent is presented. Although this scheme is exact only in the dilute gas regime or in high dimension d, a comparison with results from molecular dynamics simulations in d=1 to 4 shows that it reproduces well the behavior of generalized Lennard-Jones systems in a large portion of the fluid phase.


1968 ◽  
Vol 78 (3, Pt.1) ◽  
pp. 359-368 ◽  
Author(s):  
William F. Prokasy ◽  
Martha A. Harsanyi

1997 ◽  
Vol 35 (7) ◽  
pp. 139-145 ◽  
Author(s):  
Jiann-Yuan Ding ◽  
Shian-Chee Wu

The objective of this study is to quantify the effects of humic acid solution infiltration on the transport of organochlorine pesticides (OCPs) in soil columns using a three-phase transport model. From experimental results, it is found that the dissolved organic carbon enhances the transport of OCPs in the soil columns. In the OCPs-only column, the concentration profiles of OCPs can be simulated well using a two-phase transport model with numerical method or analytical solution. In the OCPs-DOC column, the migrations of aldrin, DDT and its daughter compounds are faster than those in the OCPs-only column. The simulation with the three-phase model is more accurate than that with the two-phase model. In addition, significant decrease of the fluid pore velocities of the OCPs-DOC column was found. When DOC leachate is applied for remediation of soil or groundwater pollution, the decrease of mean pore velocities will be a crucial affecting factor.


Sign in / Sign up

Export Citation Format

Share Document