Renormalization-group analysis on the stability of large-scale electrostatic fluctuations of two-dimensional plasmas

2004 ◽  
Vol 11 (3) ◽  
pp. 934-936 ◽  
Author(s):  
Chang-Bae Kim
2001 ◽  
Vol 16 (11) ◽  
pp. 1889-1898
Author(s):  
WALTER METZNER

We describe a Wick ordered functional renormalization group method for interacting Fermi systems, where the complete flow from the bare action of the microscopic model to the effective low-energy action is obtained from a differential flow equation. We apply this renormalization group approach to a prototypical two-dimensional lattice electron system, the Hubbard model on a square lattice. The flow equation for the effective interactions is evaluated numerically on 1-loop level. The effective interactions diverge at a finite energy scale which is exponentially small for small bare interactions. To analyze the nature of the instabilities signalled by the diverging interactions we compute the flow of the singlet superconducting susceptibilities for various pairing symmetries and also charge and spin density susceptibilities. Depending on the choice of the model parameters (hopping amplitudes, interaction strength and band-filling) we find antiferromagnetic order or d-wave superconductivity as leading symmetry breaking instability.


2020 ◽  
Vol 226 ◽  
pp. 01005
Author(s):  
Juha Honkonen ◽  
M. V. Komarova ◽  
Yu. G. Molotkov ◽  
M. Yu. Nalimov ◽  
Yu. A. Zhavoronkov

Dynamic behaviour of a boson gas near the condensation transition in the symmetric phase is analyzed with the use of an effective large-scale model derived from time-dependent Green functions at finite temperature. A renormalization-group analysis shows that the scaling exponents of critical dynamics of the effective multi-charge model coincide with those of the standard model A. The departure of this result from the description of the superfluid transition by either model E or F of the standard phenomenological stochastic models is corroborated by the analysis of a generalization of model F, which takes into account the effect of compressible fluid velocity. It is also shown that, contrary to the single-charge model A, there are several correction exponents in the effective model, which are calculated at the leading order of the ɛ= 4 − d expansion.


1989 ◽  
Vol 55 (1-2) ◽  
pp. 29-85 ◽  
Author(s):  
Jan Ambj�rn ◽  
Bergfinnur Durhuus ◽  
J�rg Fr�hlich ◽  
Th�rdur J�nsson

Sign in / Sign up

Export Citation Format

Share Document