Vapor Pressures of Tritium Oxide and Deuterium Oxide. Interpretation of the Isotope Effects

1968 ◽  
Vol 48 (1) ◽  
pp. 207-214 ◽  
Author(s):  
Wesley M. Jones
1969 ◽  
Vol 47 (21) ◽  
pp. 4049-4058 ◽  
Author(s):  
Karl R. Kopecky ◽  
Syamalarao Evani

A convenient synthesis of 2,6-dideuteriostyrene starts with N,N-dimethyl-(1-phenylethyl)-amine which is deuterated in the 2 and 6 positions by a series of exchanges using n-butyllithium followed by deuterium oxide. The deuterium isotope effects at 70° on the rates of the thermal polymerization, [Formula: see text], of 2,6-dideuterio-, α-deuterio-, and β,β-dideuteriostyrene are 1.29, 1.00, and 0.78, respectively. The deuterium isotope effects at 70° on the 2,2′-azobis-(2-methylpropionitrile) initiated rates of polymerization,[Formula: see text], are 0.96, 0.86, and 0.81, respectively. From these values the deuterium isotope effects on the rates of initiation of the thermal polymerization, k1H/k1D, are calculated to be 1.80, 1.31, and 0.92, respectively. At 147° the presence of 1.5% potassium t-butoxide decreases the rate of the thermal polymerization of neat styrene by a factor of 17, and results in the formation of 1-phenyltetralin as the greatly predominant dimer. The results support the suggestion that the thermal polymerization of styrene is initiated by hydrogen transfer from 1-phenyl-1,2,3,9-tetrahydronaphthalene, formed by a concerted dimerization of two molecules of styrene, to a third molecule of styrene.


1997 ◽  
Vol 109 (4) ◽  
pp. 415-434 ◽  
Author(s):  
Thomas E. DeCoursey ◽  
Vladimir V. Cherny

The voltage-activated H+ selective conductance of rat alveolar epithelial cells was studied using whole-cell and excised-patch voltage-clamp techniques. The effects of substituting deuterium oxide, D2O, for water, H2O, on both the conductance and the pH dependence of gating were explored. D+ was able to permeate proton channels, but with a conductance only about 50% that of H+. The conductance in D2O was reduced more than could be accounted for by bulk solvent isotope effects (i.e., the lower mobility of D+ than H+), suggesting that D+ interacts specifically with the channel during permeation. Evidently the H+ or D+ current is not diffusion limited, and the H+ channel does not behave like a water-filled pore. This result indirectly strengthens the hypothesis that H+ (or D+) and not OH− is the ionic species carrying current. The voltage dependence of H+ channel gating characteristically is sensitive to pHo and pHi and was regulated by pDo and pDi in an analogous manner, shifting 40 mV/U change in the pD gradient. The time constant of H+ current activation was about three times slower (τact was larger) in D2O than in H2O. The size of the isotope effect is consistent with deuterium isotope effects for proton abstraction reactions, suggesting that H+ channel activation requires deprotonation of the channel. In contrast, deactivation (τtail) was slowed only by a factor ≤1.5 in D2O. The results are interpreted within the context of a model for the regulation of H+ channel gating by mutually exclusive protonation at internal and external sites (Cherny, V.V., V.S. Markin, and T.E. DeCoursey. 1995. J. Gen. Physiol. 105:861–896). Most of the kinetic effects of D2O can be explained if the pKa of the external regulatory site is ∼0.5 pH U higher in D2O.


1973 ◽  
Vol 51 (4) ◽  
pp. 597-603 ◽  
Author(s):  
E. C. F. Ko ◽  
R. E. Robertson

The pseudo-thermodynamic parameters, ΔH≠, ΔS≠, and ΔCp≠ and the kinetic solvent isotope effects have been determined for the three alkyl-phosphorochloridates, where the alkyl group is ethylisopropyl and n-propyl; for tetra-methyl and tetra-ethyl phosphorodiamidic chlorides; the di-n-propyl and di-isopropyl analog, the di(isopropylmethylcarbinyl)phosphorochloridate and the tetra-ethylthiophosphorodiamidic chloride. These compounds have a potential relationship to compounds used as insecticides and as polymers. The mechanism of reaction is discussed on the basis of these data.


Measurements are reported on the kinetics of the base-catalyzed bromination of 2-car-bethoxycyclopentanone, with either hydrogen or deuterium in the active position. The solvent throughout was deuterium oxide, the catalysts employed were the solvent, monochloroacetate ion and fluoride ion, and measurements were made at 5° intervals over the range 10 to 70°C. The observed activation energies are all greater for the deutero- than for the proto-ester, but the differences are greater than would be expected on current theories of isotope effects. The observed collision factors are in every case greater for deuterium than for hydrogen, especially for catalysis by fluoride ion, where the ratio of these factors is A D / A H = 24 ± 4. These observations can only be accounted for by invoking the tunnel effect, i. e. by supposing that the motion of the proton is markedly non-classical in nature. It is shown that this hypothesis leads to reasonable dimensions for the energy barriers involved, and some if its general consequences are discussed.


1999 ◽  
Vol 77 (5-6) ◽  
pp. 997-1004 ◽  
Author(s):  
X L Armesto ◽  
M Canle L. ◽  
V García ◽  
J A Santaballa

A kinetic study of the mechanism of oxidation of Ala-Gly and Pro-Gly by aqueous chlorine has been carried out. Among other experimental facts, the deuterium solvent isotope effects were used to clarify the mechanisms involved. In a first stage, N-chlorination takes place, and then the (N-Cl)-dipeptide decomposes through two possible mechanisms, depending on the acidity of the medium. The initial chlorination step shows a small isotope effect. In alkaline medium, two consecutive processes take place: first, the general base-catalyzed formation of an azomethine (β ca. 0.27), which has an inverse deuterium solvent isotope effect (kOH-/kOD- ~ 0.8). In a second step, the hydrolysis of the azomethine intermediate takes place, which is also general base-catalyzed, without deuterium solvent isotope effect, the corresponding uncatalyzed process having a normal deuterium solvent isotope effect (kH2O/kD2O ~ 2). In acid medium, the (N-Cl)-dipeptide undergoes disproportionation to a (N,N)-di-Cl-dipeptide, the very fast decomposition of the latter in deuterium oxide preventing a reliable estimation of the solvent isotope effect.Key words: chlorination, deuterium isotope effects, fractionation factors, peptide oxidation, water treatment.


Sign in / Sign up

Export Citation Format

Share Document