proton channels
Recently Published Documents


TOTAL DOCUMENTS

182
(FIVE YEARS 41)

H-INDEX

39
(FIVE YEARS 5)

FEBS Open Bio ◽  
2022 ◽  
Author(s):  
Gustavo Chaves ◽  
Christian Derst ◽  
Christophe Jardin ◽  
Arne Franzen ◽  
Boris Musset

2021 ◽  
Author(s):  
James Hemp ◽  
Ranjani Murali ◽  
Laura A Pace ◽  
Robert A Sanford ◽  
Roland Hatzenpichler ◽  
...  

Nitrogen is an essential element for life, with the availability of fixed nitrogen limiting productivity in many ecosystems. The return of oxidized nitrogen species to the atmospheric N2 pool is predominately catalyzed by microbial denitrification (NO3- → NO2- → NO → N2O → N2). Incomplete denitrification can produce N2O as a terminal product, leading to an increase in atmospheric N2O, a potent greenhouse and ozone depleting gas2. The production of N2O is catalyzed by nitric oxide reductase (NOR) members of the heme-copper oxidoreductase (HCO) superfamily3. Here we propose that a number of uncharacterized HCO families perform nitric oxide reduction and demonstrate that an enzyme from Rhodothermus marinus, belonging to one of these families does perform nitric oxide reduction. These families have novel active-site structures and several have conserved proton channels, suggesting that they might be able to couple nitric oxide reduction to energy conservation. They also exhibit broad phylogenetic and environmental distributions, expanding the diversity of microbes that can perform denitrification. Phylogenetic analyses of the HCO superfamily demonstrate that nitric oxide reductases evolved multiple times independently from oxygen reductases, suggesting that complete denitrification evolved after aerobic respiration.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Gisela Rangel-Yescas ◽  
Cecilia Cervantes ◽  
Miguel A Cervantes-Rocha ◽  
Esteban Suárez-Delgado ◽  
Anastazia T Banaszak ◽  
...  

Voltage-dependent proton-permeable channels are membrane proteins mediating a number of important physiological functions. Here we report the presence of a gene encoding Hv1 voltage-dependent, proton-permeable channels in two species of reef-building corals. We performed a characterization of their biophysical properties and found that these channels are fast-activating and modulated by the pH gradient in a distinct manner. The biophysical properties of these novel channels make them interesting model systems. We have also developed an allosteric gating model that provides mechanistic insight into the modulation of voltage-dependence by protons. This work also represents the first functional characterization of any ion channel in scleractinian corals. We discuss the implications of the presence of these channels in the membranes of coral cells in the calcification and pH-regulation processes and possible consequences of ocean acidification related to the function of these channels.


2021 ◽  
Vol 118 (30) ◽  
pp. e2101378118
Author(s):  
William W. Chang ◽  
Ann-Sophie Matt ◽  
Marcus Schewe ◽  
Marianne Musinszki ◽  
Sandra Grüssel ◽  
...  

Otopetrins comprise a family of proton-selective channels that are critically important for the mineralization of otoliths and statoconia in vertebrates but whose underlying cellular mechanisms remain largely unknown. Here, we demonstrate that otopetrins are critically involved in the calcification process by providing an exit route for protons liberated by the formation of CaCO3. Using the sea urchin larva, we examined the otopetrin ortholog otop2l, which is exclusively expressed in the calcifying primary mesenchymal cells (PMCs) that generate the calcitic larval skeleton. otop2l expression is stimulated during skeletogenesis, and knockdown of otop2l impairs spicule formation. Intracellular pH measurements demonstrated Zn2+-sensitive H+ fluxes in PMCs that regulate intracellular pH in a Na+/HCO3−-independent manner, while Otop2l knockdown reduced membrane proton permeability. Furthermore, Otop2l displays unique features, including strong activation by high extracellular pH (>8.0) and check-valve–like outwardly rectifying H+ flux properties, making it into a cellular proton extrusion machine adapted to oceanic living conditions. Our results provide evidence that otopetrin family proton channels are a central component of the cellular pH regulatory machinery in biomineralizing cells. Their ubiquitous occurrence in calcifying systems across the animal kingdom suggest a conserved physiological function by mediating pH at the site of mineralization. This important role of otopetrin family proton channels has strong implications for our view on the cellular mechanisms of biomineralization and their response to changes in oceanic pH.


Author(s):  
Jannatul Aklima ◽  
Takumi Onojima ◽  
Sawako Kimura ◽  
Kanji Umiuchi ◽  
Takahiro Shibata ◽  
...  

Reactive oxygen species (ROS) oxidize surrounding molecules and thus impair their functions. Since mitochondria are a major source of ROS, suppression of ROS overproduction in the mitochondria is important for cells. Spontaneous transient depolarization of individual mitochondria is a physiological phenomenon widely observed from plants to mammals. Mitochondrial uncoupling can reduce ROS production; therefore, it is conceivable that transient depolarization could reduce ROS production. However, transient depolarization has been observed with increased ROS production. Therefore, the exact contribution of transient depolarization to ROS production has not been elucidated. In this study, we examined how the spontaneous transient depolarization occurring in individual mitochondria affected ROS production. When the matrix pH increased after the addition of malate or exposure of the isolated mitochondria to a high-pH buffer, transient depolarization was stimulated. Similar stimulation by an increased matrix pH was also observed in the mitochondria in intact H9c2 cells. Modifying the mitochondrial membrane potential and matrix pH by adding K+ in the presence of valinomycin, a K+ ionophore, clarified that an increase in the matrix pH is a major cause of ROS generation. When we added ADP in the presence of oligomycin to suppress the transient depolarization without decreasing the matrix pH, we observed the suppression of mitochondrial respiration, increased matrix pH, and enhanced ROS production. Based on these results, we propose a model where spontaneous transient depolarization occurs during increased proton influx through proton channels opened by increased matrix pH, leading to the suppression of ROS production. This study improves our understanding of mitochondrial behavior.


Author(s):  
Koen M. O. Galenkamp ◽  
Cosimo Commisso

Cancer cells exhibit increased glycolytic flux and adenosine triphosphate (ATP) hydrolysis. These processes increase the acidic burden on the cells through the production of lactate and protons. Nonetheless, cancer cells can maintain an alkaline intracellular pH (pHi) relative to untransformed cells, which sets the stage for optimal functioning of glycolytic enzymes, evasion of cell death, and increased proliferation and motility. Upregulation of plasma membrane transporters allows for H+ and lactate efflux; however, recent evidence suggests that the acidification of organelles can contribute to maintenance of an alkaline cytosol in cancer cells by siphoning off protons, thereby supporting tumor growth. The Golgi is such an acidic organelle, with resting pH ranging from 6.0 to 6.7. Here, we posit that the Golgi represents a “proton sink” in cancer and delineate the proton channels involved in Golgi acidification and the ion channels that influence this process. Furthermore, we discuss ion channel regulators that can affect Golgi pH and Golgi-dependent processes that may contribute to pHi homeostasis in cancer.


2021 ◽  
Author(s):  
Gisela Rangel-Tescas ◽  
Cecilia Cervantes ◽  
Miguel A Cervantes-Rocha ◽  
Esteban Suarez-Delgado ◽  
Anastazia T Banaszak ◽  
...  

Voltage-dependent proton-permeable channels are membrane proteins mediating a number of important physiological functions. Here we report the presence of a gene encoding for Hv1 voltage-dependent, proton-permeable channels in two species of reef-building corals. We performed a characterization of their biophysical properties and found that these channels are fast-activating and modulated by the pH gradient in a manner that makes them interesting models for studying these processes more easily. We have also developed an allosteric gating model that provides mechanistic insight into the modulation of voltage-dependence by protons. This work also represents the first functional characterization of any ion channel in scleractinian corals. We discuss the implications of the presence of these channels in the membranes of coral cells in the calcification and pH regulation processes and possible consequences of ocean acidification related to the function of these channels.


2021 ◽  
Vol 10 (6) ◽  
pp. 1239
Author(s):  
Alexandru Cojocaru ◽  
Emilia Burada ◽  
Adrian-Tudor Bălșeanu ◽  
Alexandru-Florian Deftu ◽  
Bogdan Cătălin ◽  
...  

As the average age and life expectancy increases, the incidence of both acute and chronic central nervous system (CNS) pathologies will increase. Understanding mechanisms underlying neuroinflammation as the common feature of any neurodegenerative pathology, we can exploit the pharmacology of cell specific ion channels to improve the outcome of many CNS diseases. As the main cellular player of neuroinflammation, microglia play a central role in this process. Although microglia are considered non-excitable cells, they express a variety of ion channels under both physiological and pathological conditions that seem to be involved in a plethora of cellular processes. Here, we discuss the impact of modulating microglia voltage-gated, potential transient receptor, chloride and proton channels on microglial proliferation, migration, and phagocytosis in neurodegenerative diseases.


2021 ◽  
Vol 22 (5) ◽  
pp. 2620
Author(s):  
Yoshifumi Okochi ◽  
Yasushi Okamura

The voltage-gated proton channel, Hv1, also termed VSOP, was discovered in 2006. It has long been suggested that proton transport through voltage-gated proton channels regulate reactive oxygen species (ROS) production in phagocytes by counteracting the charge imbalance caused by the activation of NADPH oxidase. Discovery of Hv1/VSOP not only confirmed this process in phagocytes, but also led to the elucidation of novel functions in phagocytes. The compensation of charge by Hv1/VSOP sustains ROS production and is also crucial for promoting Ca2+ influx at the plasma membrane. In addition, proton extrusion into neutrophil phagosomes by Hv1/VSOP is necessary to maintain neutral phagosomal pH for the effective killing of bacteria. Contrary to the function of Hv1/VSOP as a positive regulator for ROS generation, it has been revealed that Hv1/VSOP also acts to inhibit ROS production in neutrophils. Hv1/VSOP inhibits hypochlorous acid production by regulating degranulation, leading to reduced inflammation upon fungal infection, and suppresses the activation of extracellular signal-regulated kinase (ERK) signaling by inhibiting ROS production. Thus, Hv1/VSOP is a two-way player regulating ROS production. Here, we review the functions of Hv1/VSOP in neutrophils and discuss future perspectives.


Sign in / Sign up

Export Citation Format

Share Document